scholarly journals microRNA-548m suppresses cell migration and invasion by targeting aryl hydrocarbon receptor in breast cancer cells

Author(s):  
WM Farhan Syafiq B WM Nor ◽  
Ivy Chung ◽  
Nur Akmarina B M Said

Breast cancer is the most commonly diagnosed cancer among women and one of the leading causes of cancer mortality worldwide, in which the most severe form happens when it metastasizes to other regions of the body. Metastasis is responsible for most treatment failures in advanced breast cancer. Epithelial-mesenchymal transition (EMT) plays a significant role in promoting metastatic processes in breast cancer. MicroRNAs (miRNAs) are highly conserved endogenous short non-coding RNAs that play a role in regulating a broad range of biological processes, including cancer initiation and development, by functioning as tumor promoters or tumor suppressors. Expression of miR-548m has been found in various types of cancers, but the biological function and molecular mechanisms of miR-548m in cancers have not been fully studied. Here, we demonstrated the role of miR-548m in modulating EMT in the breast cancer cell lines MDA-MB-231 and MCF-7. Expression data for primary breast cancer obtained from NCBI GEO datasets showed that miR-548m expression was downregulated in breast cancer patients compared with healthy group. We hypothesize that miR-548m acts as a tumor suppressor in breast cancer. Overexpression of miR-548m in both cell lines increased E-cadherin expression and decreased the EMT-associated transcription factors SNAI1, SNAI2, ZEB1 and ZEB2, as well as MMP9 expression. Consequently, migration and invasion capabilities of both MDA-MB-231 and MCF-7 cells were significantly inhibited in miR-548m-overexpressing cells. Analysis of 1059 putative target genes of miR-548m revealed common pathways involving both tight junction and the mTOR signaling pathway, which has potential impacts on cell migration and invasion. Furthermore, this study identified aryl hydrocarbon receptor (AHR) as a direct target of miR-548m in breast cancer cells. Taken together, our findings suggest a novel function of miR-548m in reversing the EMT of breast cancer by reducing their migratory and invasive potentials, at least in part via targeting AHR expression.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mariana A. Callero ◽  
Andrea I. Loaiza-Pérez

Many estrogen-receptor- (ER-) expressing breast cancers become refractory to ER-based therapies. New antitumor drugs like aminoflavone (AF) and benzothiazoles (Bzs) have been developed and have exquisite antitumor activity in ER+MCF-7 and T47D cells and in a MCF-7 nude mouse model. ER(−) breast cancer cells like MDA-MB-231 are less susceptible. We previously found in MCF-7 cells that these drugs activate the aryl hydrocarbon receptor (AhR) via translocation to the nucleus, induction of AhR-specific DNA binding activity, and expression of CYP1A1, whose transcription is controlled by the AhR-ARNT transcription factor. CYP1A1 metabolizes AF and Bz to a species which directly or after further metabolism damages DNA. In contrast an AhR-deficient variant of MCF-7 or cells with predominantly nuclear AhR expression, such as MDA-MB 231, are resistant. Thus, these drugs, unlike other neoplastic agents, require AhR-mediated signaling to cause DNA damage. This is a new treatment strategy for breast cancers with intact AhR signaling.


2016 ◽  
Vol 90 (5) ◽  
pp. 674-688 ◽  
Author(s):  
Olga Novikov ◽  
Zhongyan Wang ◽  
Elizabeth A. Stanford ◽  
Ashley J. Parks ◽  
Alejandra Ramirez-Cardenas ◽  
...  

2020 ◽  
Vol 70 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Worood G. Ihraiz ◽  
Mamoun Ahram ◽  
Sanaa K. Bardaweel

AbstractBreast cancer is the most common cancer and is the leading cause of cancer deaths among women worldwide. Despite the availability of numerous therapeutics for breast cancer management, cytotoxicity and emergence of drug resistance are major challenges that limit their benefits. The acidic microenvironment surrounding tumor cells is a common feature inducing cancer cell invasiveness and chemoresistance. Proton pump inhibitors (PPIs) are one of the most commonly prescribed drugs for the treatment of acid-related conditions. PPIs have been reported to exhibit antitumorigenic effects in many cancer types. In this study, the anti-proliferative and anti-migratory effects of PPIs in three breast cancer cell lines; MCF-7, T47D, and MDA-MB-231 cells, have been investigated. In addition, the combined effects of PPIs with anticancer drugs, as well as the mechanism of PPI-mediated anti-proliferative activity were evaluated. The anti-proliferative and combined effects of PPIs were evaluated by MTT assay. Cell migration was assessed using the wound-healing assay. The mechanism of cell death was assessed using annexin V-FITC/propidium iodide staining flow cytometry method. Our results indicated that PPIs treatment significantly inhibited the growth of breast cancer cells in a dose-dependent manner. The antiproliferative activity of PPIs was significantly induced by apoptosis in all tested cell lines. The combined treatment of PPIs with doxorubicin resulted in a synergistic effect in all cell lines, whereas the combined treatment with raloxifene exhibited synergistic effect in T47D cells only and additive effects in MDA-MB-231 and MCF-7 cells. In addition, PPIs treatment significantly reduced cell migration in MDA-MB-231 cells. In conclusion, the addition of PPIs to the treatment regimen of breast cancer appears to be a promising strategy to potentiate the efficacy of chemotherapy and may suppress cancer metastasis.


Molecules ◽  
2017 ◽  
Vol 22 (11) ◽  
pp. 1847 ◽  
Author(s):  
Sheng-Nan Lo ◽  
Chun-Wei Wang ◽  
Yueh-Shieh Chen ◽  
Chiung-Chiao Huang ◽  
Tian-Shung Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document