Evaluation of Aceclofenac Loaded Alginate Mucoadhesive Spheres Prepared by Ionic Gelation

Author(s):  
M. Mohan Varma ◽  
H.L.N Rao

Controlled release aceclofenac spheres were prepared in a cross-linked alginate matrix using ionotropic gelation technique. A suspension of aceclofenac in sodium alginate solution was added drop wise into 10% w/v calcium chloride solution and the resulting spheres were evaluated for their drug content, flow properties, mucoadhesive property and the dissolution rate. The aceclofenac loaded alginate spheres were prepared using various mucoadhesive polymers: sodium alginate, HPMC, sodium CMC, guar gum, methyl cellulose and carbopol. The calcium chloride was used as the crosslinking agent. Fourier transform infrared spectroscopy (FTIR) was used to evaluate the drug-polymer interaction. The alginate spheres showed good rheological properties, drug content uniformity and high entrapment efficiency. The aceclofenac release from the spheres was slow and extended up to 10 hours. The drug loaded spheres exhibited good mucoadhesive property in the in vitro wash off test. The drug release from the optimized formulation (drug-sodium alginate-HPMC K15M; 1:0.9: 0.1 ratio) followed zero order kinetics and exhibited non-Fickian diffusion. The rate of release of aceclofenac decreased with increasing concentration of sodium alginate due to slow penetration of dissolution fluid in the spheres. The results suggest that alginate spheres can potentially deliver aceclofenac at zero-order controlled release following oral administration. The FTIR studies indicated the absence of the drug-polymer interaction in the solid state.

Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1853-1859 ◽  
Author(s):  
Oliver Werzer ◽  
Stephan Tumphart ◽  
Roman Keimel ◽  
Paul Christian ◽  
Anna Maria Coclite

Temperature-controlled release and study on the effects of the drug–polymer interaction and pH.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


2020 ◽  
pp. 41-61
Author(s):  
Liliana Mariel Cáceres ◽  
Gustavo Adolfo Velasco ◽  
Eliana Paola Dagnino ◽  
Ester R Chamorro

Essential grapefruit oil with high concentrations of limonene is used in food, cosmetic and pharmaceutical industries due to its antimicrobial properties, fragrance, and flavor. To facilitate its manipulation and protect it from adverse environmental factors, the microencapsulation is used. The objective of this work was to optimize the microencapsulation process of grapefruit oil using external ionic gelation coupled to extrusion with sodium alginate and calcium chloride. We achieved the best encapsulation conditions with calcium chloride concentration at 7.4% w/v and a crosslinking time of 58 minutes, obtaining a yield of 62% and an efficiency of 100% with an oil loading capacity of 10% w/w. The chemical adsorption of calcium as well during the crosslinking process was studied, observing a significant fit with the Elovich equation. And an adjustment of the controlled release of the oil was obtained to the empirical kinetic model of Korsmeyer and Peppas.


Author(s):  
Mohmadmoin K. Modasiya ◽  
A K Patel ◽  
V.M Patel ◽  
G.C Patel

In this study famotidine was used as a model drug to formulate and evaluate pH-induced in situ gelling system for oral sustained release drug delivery in stomach which has shorter biological half-life. To study the effect of independent variables 32 full factorial design was employed, concentration of pectin as pH dependant polymer and concentration of calcium chloride on dependent variables like viscosity, drug content, 50% and 80% drug release and similarity factor. It was found that both the concentration of pectin and concentration of calcium chloride had significant effect on viscosity, drug content, 50% and 80% drug release and similarity factor of the system. In vitro drug release study showed that drug released from the in situ gel followed non-Fickian diffusion. Mathematical modeling was employed for quantitative evaluation of the effect of formulation variables. Rat pylorus legation model was used for in vivo study of the selected formulation. Results shows gel formation in gastric juice and reduction in ulcer index. There were few or no major changes in the formulation during three months stability testing. The in situ gelling systems are useful for delivery of famotidine.


2014 ◽  
Vol 884-885 ◽  
pp. 494-497
Author(s):  
Xiao Zhou Liu ◽  
Xiao Zhen Liu ◽  
Zhong Fang Lai ◽  
Yue Xing Song ◽  
Li Zhai

The controlled-release tablets of sasanquasaponin-sodium alginate-hydroxy-propyl methyl cellulose (SQS-SAL-HPMC) were prepared by using SQS, SAL and HPMC as the main drug and accessories. The effects of the preparation method of the controlled-release powder and the amount of ethanol on release rate respectively were studied. The release rate curve of the data of the prescription of the controlled-release tablets of SQS-SAL-HPMC were fitted as zero order, one order and Higuchi equation. The controlled-release tablet of SQS-SAL-HPMC was characterized by IR techniques. The releasing rate of the controlled-release tablets of SQS-SAL-HPMC are controlled by controlling the preparation method of the controlled-release powder and the amount of ethanol. The controlled- release tablets of SQS-SAL-HPMC release SQS by slowness and constant in 12h. The chemical bonds are formed among SQS, SAL and HPMC.


2021 ◽  
pp. 1-13
Author(s):  
Barkat Ali Khan ◽  
Muhammad Kamran Khan ◽  
Naeem Haider ◽  
Farid Menaa ◽  
Muhammad Khalid Khan

The aim of this study was to enhance the solubility of Aceclofenac with a new polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soloplus ®) and formulate it in controlled release (CR) tablet dosage form by direct compression method with HPMC K-15. Solid dispersions were prepared in different ratio of Aceclofenac and Soloplus ® as F1, F2 and F3 with different polymer ratios i.e. 30%, 50%, and 70% respectively. All the quality control tests were performed for the prepared controlled release tablets. Drug polymer interaction studies of Aceclofenac and Soloplus ® were carried using FTIR and XRD. Dissolution study was carried out against Alkaris ® as a standard reference. The formulation F3 showed optimum results and followed zero order kinetics. The Soloplus ® improved the solubility of the drug and the CR formulation enhanced the delivery in a sustained manner. Hence, the CR formulation enhanced the delivery of aceclofenac in a sustained manner, thereby an efficient drug delivery may lead to an effective anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document