Development and Evaluation of Gastrobioadhesive Glimepiride Sustained Release Matrix Tablet Using Aegle Marmelos Polysaccharide

Author(s):  
M. A. Shende ◽  
Yogesh P Khedkar

The purpose of present study was to formulate and evaluate glimepiride gastrobioadhesive drug delivery using Aegle Marmelos polysaccharide and synthetic polymer for prolongation of gastric residence time and reduce the dosing frequency. Glimepiride matrices were prepared by direct compression method and evaluated with an aim of presenting glimepiride as sustained release for improving the patient’s compliance. A central composite design (CCD) was employed as Aegle Marmelos polysaccharide (X1) and HPMC K4M (X2) independent variables to optimize the glimepiride in terms of sustained release and gastrobioadhesive. The response (Y1) as bioadhesive strength, (Y2) percentage drug releases at 8 h and (Y3) time (t50) required to 50% drug release were measured for each trial and statistical equations with significant interaction terms were derived to predict relation. The physical properties of all formulations hardness, friability, drug content and weight variation were found within limits indicating that the prepared matrix tablets met the USP specifications. Among all the formulations, F1 formulation found to be optimized based on the criteria of attaining the maximum value of drug released Q8 of 98.58±1.12%, 18.43 g bioadhesive strength and time to 50% drug release (t50) of 6 h. An in-vitro drug release studies reveals that as concentrations of polymers increases the drug release decreases, producing sustained release of glimepiride. The release co-efficient values ‘n’ (˂0.3645) indicated that the drug release (F1) followed fickian diffusion mechanism kinetics. A glimepiride gastroadhesive matrix was developed to enhance its bioavailability by prolonging the gastric residence time with desirable release modulation for a once daily administration.

2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jadupati Malakar ◽  
Amit Kumar Nayak ◽  
Soumita Goswami

The aim of this investigation was to develop and optimize bisoprolol fumarate matrix tablets for sustained release application by response surface methodology based on 23 factorial design. The effects of the amounts of calcium alginate, HPMC K4M, and Carbopol 943 in bisoprolol fumarate matrix tablets on the properties of bisoprolol fumarate sustained release matrix tablets like drug release and hardness were analyzed and optimized. The observed responses were coincided well with the predicted values by the experimental design. The optimized bisoprolol fumarate matrix tablets showed prolonged sustained release of bisoprolol fumarate over 6 hours. These matrix tablets followed the first-order model with anomalous (non-Fickian) diffusion mechanism.


1970 ◽  
Vol 9 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Muhammad Rashedul Islam ◽  
Ishtiaq Ahmed ◽  
Mohiuddin Abdul Quadir ◽  
Md Habibur Rahman

The objective of the present study was to develop once-daily sustained-release matrix tablets of naproxen, one of the most potent non-steroidal anti-inflammatory agents used in the treatment of arthritic pain. The tablets were prepared by direct compression method using hydrophilic matrix materials like Methocel® K4M CR and Methocel® K15M CR. The tablets were subjected to measurement of thickness, diameter, weight variation, drug content, hardness and friability, the results of which were within compendial specification range. In vitro release studies were carried out by the USP basket method and were carried out at pH 7.4 buffer for ten hours. The results of dissolution studies indicated that higher polymer content in the matrix (40%) decreased the release rate of the drug as shown in formulation NMK4MF6 and NMK15MF6 (where lactose content is zero). The most successful formulations of the study, exhibited satisfactory drug release which was very close to the theoretical release profile. All the formulations exhibited diffusion-dominated drug release. Key words: Naproxen; Methocel® K4M CR; Methocel® K15M CR; Sustained release; Matrix tablets DOI: 10.3329/dujps.v9i1.7429 Dhaka Univ. J. Pharm. Sci. 9(1): 47-52 2010 (June)


2019 ◽  
Vol 9 (4-A) ◽  
pp. 260-268
Author(s):  
SIMRAN SHIVDAS PAWAR ◽  
Prashant S. Malpure ◽  
Santosh S Surana ◽  
Jayashri S Bhadane

The objective of the present study was to study the effect of polymers on sustained release of Captopril from tablets. Compatibility was studied by Fourier transform infrared spectroscopy and DSC. The tablets were prepared by direct compression technique using Xanthan gum and Ethyl Cellulose. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity and in-vitro dissolution. Pre and post compression parameters were evaluated and all the parameters were found within the limit. The drug release data were subjected to different models in order to evaluate release kinetics and mechanism of drug release. Formulation F4 was selected as best formulation. The dissolution of formulation F4 can be Shows Non-fickian drug release mechanism.


2015 ◽  
Vol 14 (9) ◽  
pp. 1557-1563
Author(s):  
M Zaman ◽  
RM Sarfraz ◽  
S Adnan ◽  
A Mahmood ◽  
M Hanif ◽  
...  

Purpose: To formulate and characterize once daily controlled release tablet of loxoprofen sodium.Methods: Eudragit RS-100, hydroxylpropyl methylcellulose (HPMC) and pectin were used as release retarding polymers. All the formulations were prepared by direct compression method. Various precompression studies were carried out to determine Hausner’s ratio, Carr’s index, angle of repose, bulk density and tapped density Differential scanning calorimetry (DSC) studies and also post-compression studies to evaluate hardness, friability, weight variation, drug content, in-vitro drug release were conducted on the tablets. The drug release data were subjected to kinetic models, including zero order, first order, Hixon Crowell, Higuchi and Korsmeyer-Peppas.Results: Compressibility index (7.6 ± 1.32 - 12.5 ± 1.43%), Hausner’s ratio (1.08 ± 0.04 - 1.14 ± 0.03), angle of repose (27.78 ± 0.47 - 30.49 ± 0.46°), hardness (6.25 ± 0.27 - 7.21±0.21 kg/cm2), friability (0.14 ± 0.06 - 0.28 ± 0.0 %), weight variation (249.5 ± 2.09 - 251.35 ± 2.41 mg) and drug content  (97.30 ± 0.28 - 103.70 ± 0.31 %) were within generally accepted limits for the pre-and post-compression formulations, respectively. The tablets having the maximum amount of among the three polymers tested as matrix materials, HPMC, represented by F3 tablets, exerted better sustained release properties after 12 h. Release pattern was more of Fickian diffusion followed by Higuchi mechanism.Conclusion: The release of the loxoprofen sodium was optimized up to 12 h.Keywords: Loxoprofen, Sustained release, hydroxypropyl methylcelluose, Pectin, Eudragit, Matrix tablets


2012 ◽  
Vol 1 (8) ◽  
pp. 186-192 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.DOI: http://dx.doi.org/10.3329/icpj.v1i8.11248 International Current Pharmaceutical Journal 2012, 1(8): 186-192 


Author(s):  
Tulsi Bisht ◽  
Rishishwar Poonam

The aim of present work was to develop once daily sustained release matrix tablet of aceclofenac by wet granulation technique using natural gums i.e.: gum acacia, guar gum and Xanthan gum. In this present study matrix tablets were prepared using three different methods and a comparative study was done. Aceclofenac sodium being the newer derivative of diclofenac having short biological half life (4hrs.), so it requires more than one dose per day to maintain therapeutic dose. The prepared tablets were evaluated for various parameters like weight variation, hardness, swelling index, friability, percent drug release and various release profile like zero order, first order, Higuchi's, and Koshemeyrs-peppa. All the evaluation parameters met pharmacopoeial specifications and through dissolution studies it was matrix tablets prepared with method 2 shows heighest percent drug release and matrix tablet prepared by method 3 showed lowest percent drug release at the end of 8 hrs. (Shown in fig. 8, comparative release study of all three formulations). Matrix tablet of aceclofenac were successfully prepared and evaluated and it can be concluded that matrix tablet prepared with natural gums showed release rate for a prolonged time and can be of great importance for “once daily” tablet to reduce side effects and toxicity related with NSAIDs.  


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (11) ◽  
pp. 71-73
Author(s):  
Ch. Taraka Ramarao ◽  
◽  
J Vijaya Ratna ◽  
R. B. Srinivasa

The present investigation involves developing gastro retentive drug delivery systems (GFDDS) of alfuzosin HCl using HPMCK100M a is the matrixing agent and floating enhancer. Sodium bicarbonate in the acidic environment reacts with the acid and produces carbon dioxide. The gastro retentive tablets can be formulated to increase the gastric residence time and thereby increase the oral bioavailability. From the drug release study, it was concluded that the AFTB4 formula of HPMC K 100 M matrix tablets gives the controlled release up to 12 hours by showing increased release with floating lag time 24 seconds. Non – Fickian diffusion was the drug release mechanism from the matrix tablets formulated employing HPMC K 100 M. The matrix tablets (AFTB4) formulated employing 40 % HPMC K 100 M are best suited to be used for gastro retentive dosage form of alfuzosin HCl. Finally, it can be concluded that good candidates for the preparation of gastro retentive dosage forms due its gastric stability, gastric absorption and better bioavailability.


Sign in / Sign up

Export Citation Format

Share Document