Formulation and Evaluation of Salbutamol Sulphate Taste Masked Oral Disintegrating Tablets

Author(s):  
Y.Shravan Kumar ◽  
Karnakar M ◽  
Harika S ◽  
Mounika M

Salbutamol is a short acting, selective beta2-adrenergic receptor agonist used in the treatment of astama and COPD. The aim of this study is to formulate oral disintegrating tablets of salbutamol sulphate to achieve rapid dissolution, absorption and further improving the bioavailability of the drug. Oral disintegrating tablets of salbutamol sulphate were designed with a view to enhance the patient compliance and provide a quick onset of action. The oral disintegrating tablets were prepared by using different synthetic polymers by direct compression method. Development of the formulation in the present study was based on the concentration of superdisintegrants and the properties of the drug. Nine batches of tablets were formulated and evaluated for various parameters: drug content, weight variation, water absorption ratio, wetting time, in vitro disintegration, hardness, friability, thickness uniformity, and in vitro dissolution. A fourier-transform infrared spectroscopy (FTIR) study showed that there were no significant interactions between the drug and the excipients. The prepared tablets were good in appearance and showed acceptable results for hardness and friability. The in vitro disintegrating time of the formulated tablets was found to be 14.39-32.41 sec and the drug content of tablets in all formulations was found to be between 87.48-99.96 %, which complied within the limits established in the Indian pharmacopeia. The study concluded that taste of the drug was masked with the help of sodium saccarhin, flavor and the concentration of super disintegrating agent increases the disintegration time of tablets get decreases. The formulation (F9) had a minimum disintegration time of 14.39 sec and 99.96 % of the drug was released within 20 min.

Author(s):  
Y Shravan Kumar ◽  
Deepthi B ◽  
Mounika M

Salbutamol is a short-acting, selective beta-2-adrenergic receptor agonist used in treatment of asthma and COPD. In the present work, sublingual films of Salbutamol sulphate were developed with a view to enhance the patient compliance and provide quick onset of action. Salbutamol has a bioavailability of 53 - 60%. The goal of the study was to formulate sublingual films of Salbutamol sulphate to achieve a better dissolution rate and further improving the bioavailability of the drug. Sublingual films prepared by solvent casting method using film forming polymers HPMC-E5, HPMC-E15 and Maltodextrin in different ratios. The prepared batches of films were evaluated for the drug content, weight variation, film thickness, disintegration time and in vitro dissolution studies. Among all, the formulation B1 containing HPMC-E15 with a drug: polymer ratio (1:6) was found to be the best formulation which showed 98.36% of the drug release within 15 minutes and disintegration time 18 sec. This study shows the viability of developing sublingual films of salbutamol.    


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


2018 ◽  
Vol 6 (3) ◽  
pp. 5-16 ◽  
Author(s):  
ABRAHAM LINKU ◽  
JOSEPH SIJIMOL

The aim of present work was the development of fast dissolving oral film of Loratadine to overcome the limitations of current routes of administration, to provide immediate action and increase the patient compliance. To improve the bioavailability of the drug, fast dissolving oral film were formulated using different grades of Hydroxy Propyl Methyl Cellulose(HPMC) and various plasticizers like Polyethylene Glycol(PEG) 400, glycerol, Propylene glycol(PG) by solvent casting method. The formulated films were evaluated for film thickness, surface pH, folding endurance, weight variation, % moisture loss, exvivo permeation study, tensile strength, % elongation, drug content uniformity, in vitro dissolution studies,in vitro disintegration test and in vivo study. The optimized formulation (F9) containing HPMC E5 and glycerol showed minimum disintegration time (10.5 s), highest in vitrodissolution (92.5%) and satisfactory stability. Ex vivo permeation study of optimized formulation showed a drug release of 80.6% within 10 min. The milk induced leucocytosis inrat proved that fast dissolving oral films of Loratadine produced a faster onset of action compared to the conventional tablets. These findings suggest that fast dissolving oral film of Loratadine could be potentially useful for treatment of allergy where quick onset of action is required.


Author(s):  
P. Vamsee Kumar ◽  
Y. Shravan Kumar

In current investigation an attempt has been made to formulate and evaluate Quinapril mouth dissolving films using HPMC 50cps, E5, E15 and in combination of Pullulan by Solvent evaporation method. Sodium starch glycolate acts as a super disintegrating agent and it is shown that as the concentration of the super disintegrates increases the disintegration time decreases. The films were evaluated for weight variation, surface pH, folding endurance, drug content, dissolving time, disintegration time, and in-vitro dissolution studies. Based on the evaluation parameters F17 was to be optimized formulation. The optimized film (F17) showed the more drug release i.e 99.40 ± 5.30% within 7 min, lowest in vitro disintegration time 10 sec. FTIR studies proved no drug polymer interaction takes place. These results revealed that fast dissolving films of Quinapril could be formulated for quick onset of action which is required in the efficient management of hypertension.


2019 ◽  
Vol 9 (6) ◽  
pp. 110-115
Author(s):  
Rajat Pawar ◽  
Ravi Sharma ◽  
Gajanan Darwhekar

This research work was aimed to enhance the oral bioavailability and provide faster onset of action of Prochlorperazine maleate (used for the treatment nausea and vomiting) by formulating its mouth dissolving film (MDF). Prochlorperazine belongs to BCS II and oral bioavailability of it’s about 11-15%. The MDF of Prochlorperazine  maleate was prepared by solvent casting  method using HPMC (film forming agent),Glycerol (plasticizer), Betacyclodextrin (solubilizing agent), Citric acid (saliva stimulating agent), Mannitol (sweetening agent). The formulation was optimized by two factors, three levels (32) was used for the formulation optimization of fast dissolving film of Prochlorperazine maleate and experimental trials are performed on all 9 formulation. In which the amount of HPMC, Glycerol were selected as independent variables (factor) varied at three different level: low (-1), medium (0), and high (+1) levels. The drug release and disintegration time used as dependent variables (response). and formulation was evaluated for weight variation, thickness, folding endurance, drug content, in- vitro disintegration, in vitro dissolution study and stability study. Based on results it was concluded that MDF (F3) showed enhanced bioavailability and faster onset of action. Keywords: Prochlorperazine maleate, Mouth dissolving film, bioavailability


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


Sign in / Sign up

Export Citation Format

Share Document