scholarly journals FORMULATION AND EVALUATION OF FAST DISSOLVING ORAL FILM OF ANTI-ALLERGIC DRUG

2018 ◽  
Vol 6 (3) ◽  
pp. 5-16 ◽  
Author(s):  
ABRAHAM LINKU ◽  
JOSEPH SIJIMOL

The aim of present work was the development of fast dissolving oral film of Loratadine to overcome the limitations of current routes of administration, to provide immediate action and increase the patient compliance. To improve the bioavailability of the drug, fast dissolving oral film were formulated using different grades of Hydroxy Propyl Methyl Cellulose(HPMC) and various plasticizers like Polyethylene Glycol(PEG) 400, glycerol, Propylene glycol(PG) by solvent casting method. The formulated films were evaluated for film thickness, surface pH, folding endurance, weight variation, % moisture loss, exvivo permeation study, tensile strength, % elongation, drug content uniformity, in vitro dissolution studies,in vitro disintegration test and in vivo study. The optimized formulation (F9) containing HPMC E5 and glycerol showed minimum disintegration time (10.5 s), highest in vitrodissolution (92.5%) and satisfactory stability. Ex vivo permeation study of optimized formulation showed a drug release of 80.6% within 10 min. The milk induced leucocytosis inrat proved that fast dissolving oral films of Loratadine produced a faster onset of action compared to the conventional tablets. These findings suggest that fast dissolving oral film of Loratadine could be potentially useful for treatment of allergy where quick onset of action is required.

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas A

The main objective of this study was to develop fast dissolving oral films of ropinirole HCl to attain quick onset of action for the better management of Parkinson’s disease. Twenty-seven formulations (F1-F27) of ropinirole oral dissolving films by solvent-casting method using 33 response surface method by using HPMC E15, Maltodextrin PEG 4000 by using Design of experiment software. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F4 showed minimum disintegration time 11 sec, maximum drug was released i.e. 99.68 ± 1.52% of drug within 10 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions takes place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 92.77 ± 1.52 after 50 min. Therefore, it can be a good alternative to conventional ropinirole for immediate action. In vitro evaluation of the ropinirole fast dissolving films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of ropinirole. The oral dissolving film is considered to be potentially useful for the treatment of Parkinson’s disease where quick onset of action is desired


2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.


Author(s):  
S. Jyothi Sri ◽  
D.V. R.N Bhikshapathi

The present investigation was aimed with the objective of developing fast dissolving oral films of Aripiprazole to attain quick onset of action for the better management of Schizophrenia. Fourteen formulations (F1-F14) of Aripiprazole mouth dissolving films by solvent-casting method using HPMC E5, HPMC E15, Maltodextrin, PG and PVA. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F13 showed minimum disintegration time 10 sec, maximum drug was released i.e. 99.49 ± 0.36% of drug within 8 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions take place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 20.73 ± 0.25 after 8 min. Therefore, it can be a good alternative to conventional Aripiprazole for immediate action. In vitro evaluation of the Aripiprazole fast dissolving oral films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Aripiprazole. The mouth dissolving film is potentially useful for the treatment of Schizophrenia where the quick onset of action is desired.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


Author(s):  
P. Vamsee Kumar ◽  
Y. Shravan Kumar

In current investigation an attempt has been made to formulate and evaluate Quinapril mouth dissolving films using HPMC 50cps, E5, E15 and in combination of Pullulan by Solvent evaporation method. Sodium starch glycolate acts as a super disintegrating agent and it is shown that as the concentration of the super disintegrates increases the disintegration time decreases. The films were evaluated for weight variation, surface pH, folding endurance, drug content, dissolving time, disintegration time, and in-vitro dissolution studies. Based on the evaluation parameters F17 was to be optimized formulation. The optimized film (F17) showed the more drug release i.e 99.40 ± 5.30% within 7 min, lowest in vitro disintegration time 10 sec. FTIR studies proved no drug polymer interaction takes place. These results revealed that fast dissolving films of Quinapril could be formulated for quick onset of action which is required in the efficient management of hypertension.


Author(s):  
Shayeda ◽  
Sathish Dharani

The goal of the present investigation was to design and evaluate mucoadhesive buccal patches of Ondansetron Hydrochloride (OND) which is used for nausea and vomiting associated with cancer chemotherapy and radiotherapy. Permeation of OND was calculated ex vivo using porcine buccal membrane. Buccal films were developed by solvent-casting technique using Hydroxy Propyl Methyl Cellulose(HPMC E15) as mucoadhesive polymer. The patches were evaluated for weight variation, thickness variation, surface pH, moisture absorption, in vitro residence time, mechanical properties, in vitro release, ex vivo permeation studies and drug content uniformity. The formulation F3 was found to give the better results and obeys first order kinetics. 


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Km. Roshani ◽  
Mangla Nand Singh ◽  
D. Sasmal ◽  
P. D. Panda ◽  
Jai Narayan Mishra ◽  
...  

Etoricoxib belongs to a class of drugs called non-steroidal anti-inflammatory drugs (NSAIDs). Etoricoxib acts by reducing the pain and swelling (inflammation) in the joints and muscles of people older than 16 years of age and older patients with osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and gout. The present study was aimed to formulate fast dissolving oral films to enhance bioavailability, avoid presystemic metabolism and fast onset of action. The Preformulation studies such as Micromeritics, melting point, partition coefficients, UV spectroscopy, thin layer chromatography, loss on drying were carried out. The fast dissolving oral film was successfully fabricated by solvent casting method. Oral film was fabricated using PVA and PVP polymer. The prepared films were evaluated for Organoleptic evaluations, film weight, thickness, folding endurance, tensile strength, drug content uniformity of films, surface pH, disintegration time and in-vitro dissolution studies and SEM study. The formulation F8 has shown disintegration time of 22±1 seconds and is more promising, showed drug release in phosphate buffer 6.8 pH 86.33% in 10 min. Hence formulation F8 was selected as best formulation. In the stability testing all films stored at elevated temperature showed slight change in pH, other parameters were found to be unchanged.


2019 ◽  
Vol 9 (6) ◽  
pp. 110-115
Author(s):  
Rajat Pawar ◽  
Ravi Sharma ◽  
Gajanan Darwhekar

This research work was aimed to enhance the oral bioavailability and provide faster onset of action of Prochlorperazine maleate (used for the treatment nausea and vomiting) by formulating its mouth dissolving film (MDF). Prochlorperazine belongs to BCS II and oral bioavailability of it’s about 11-15%. The MDF of Prochlorperazine  maleate was prepared by solvent casting  method using HPMC (film forming agent),Glycerol (plasticizer), Betacyclodextrin (solubilizing agent), Citric acid (saliva stimulating agent), Mannitol (sweetening agent). The formulation was optimized by two factors, three levels (32) was used for the formulation optimization of fast dissolving film of Prochlorperazine maleate and experimental trials are performed on all 9 formulation. In which the amount of HPMC, Glycerol were selected as independent variables (factor) varied at three different level: low (-1), medium (0), and high (+1) levels. The drug release and disintegration time used as dependent variables (response). and formulation was evaluated for weight variation, thickness, folding endurance, drug content, in- vitro disintegration, in vitro dissolution study and stability study. Based on results it was concluded that MDF (F3) showed enhanced bioavailability and faster onset of action. Keywords: Prochlorperazine maleate, Mouth dissolving film, bioavailability


Author(s):  
Y.Shravan Kumar ◽  
Karnakar M ◽  
Harika S ◽  
Mounika M

Salbutamol is a short acting, selective beta2-adrenergic receptor agonist used in the treatment of astama and COPD. The aim of this study is to formulate oral disintegrating tablets of salbutamol sulphate to achieve rapid dissolution, absorption and further improving the bioavailability of the drug. Oral disintegrating tablets of salbutamol sulphate were designed with a view to enhance the patient compliance and provide a quick onset of action. The oral disintegrating tablets were prepared by using different synthetic polymers by direct compression method. Development of the formulation in the present study was based on the concentration of superdisintegrants and the properties of the drug. Nine batches of tablets were formulated and evaluated for various parameters: drug content, weight variation, water absorption ratio, wetting time, in vitro disintegration, hardness, friability, thickness uniformity, and in vitro dissolution. A fourier-transform infrared spectroscopy (FTIR) study showed that there were no significant interactions between the drug and the excipients. The prepared tablets were good in appearance and showed acceptable results for hardness and friability. The in vitro disintegrating time of the formulated tablets was found to be 14.39-32.41 sec and the drug content of tablets in all formulations was found to be between 87.48-99.96 %, which complied within the limits established in the Indian pharmacopeia. The study concluded that taste of the drug was masked with the help of sodium saccarhin, flavor and the concentration of super disintegrating agent increases the disintegration time of tablets get decreases. The formulation (F9) had a minimum disintegration time of 14.39 sec and 99.96 % of the drug was released within 20 min.


Author(s):  
Y Shravan Kumar ◽  
Deepthi B ◽  
Mounika M

Salbutamol is a short-acting, selective beta-2-adrenergic receptor agonist used in treatment of asthma and COPD. In the present work, sublingual films of Salbutamol sulphate were developed with a view to enhance the patient compliance and provide quick onset of action. Salbutamol has a bioavailability of 53 - 60%. The goal of the study was to formulate sublingual films of Salbutamol sulphate to achieve a better dissolution rate and further improving the bioavailability of the drug. Sublingual films prepared by solvent casting method using film forming polymers HPMC-E5, HPMC-E15 and Maltodextrin in different ratios. The prepared batches of films were evaluated for the drug content, weight variation, film thickness, disintegration time and in vitro dissolution studies. Among all, the formulation B1 containing HPMC-E15 with a drug: polymer ratio (1:6) was found to be the best formulation which showed 98.36% of the drug release within 15 minutes and disintegration time 18 sec. This study shows the viability of developing sublingual films of salbutamol.    


Sign in / Sign up

Export Citation Format

Share Document