scholarly journals Preeclampsia—an immune disease? An epidemiologic narrative

Author(s):  
Gustaaf Dekker ◽  
Pierre Robillard

The maternal syndrome preeclampsia is triggered by syncytiotrophoblast (STB) stress; the heterogeneity of the syndrome is caused by the different pathways leading to this STB stress. Inflammation plays a pivotal role in the pathogenesis of preeclampsia. While, the immune system at large is therefore intimately involved in the causation of this heterogeneous syndrome, the role of the adaptive immune system is more controversial. The classic paradigm placed preeclampsia as the disease of the nulliparous pregnant women. Up to the later part of the 20th century, human reproduction, particularly in Western societies, was characterised by a low rate of pre-marital sex, and the great majority of children being born within one stable sexual relationship. More prolonged periods of regular sexual intercourse within a stable relationship have been demonstrated to reduce the risk of preeclampsia and fetal growth restriction. Primarily animal studies have indeed shown that repetitive sperm exposure leads to partner specific mucosal tolerance. Societal changes made partner change over the reproductive period of individual women extremely common. For the adaptive immune system of multiparous women, being pregnant in a new sexual relationship (primipaternity) would represent being faced with a new “hemi-allograft”. In these pregnancies, potential couple-specific immune “maladaptation” could lead to the superficial cytotrophoblast invasion of the spiral arteries, known to be associated with early-onset preeclampsia. Having a new pregnancy in a different relationship does indeed increase the risk for this type of preeclampsia. Large epidemiologic population studies identified prolonged birth interval but not “primipaternity” as a risk factor for preeclampsia in multiparous women. This apparent contradiction is explained by the fact that the great majority of preeclampsia cases in these population studies involve term preeclampsia. In late-onset preeclampsia, the far more common phenotype of the syndrome, STB stress is not caused by lack of proper spiral artery modification, but involves maternal genetic predisposition to cardiovascular and metabolic disease, with in particular obesity/metabolic syndrome representing major players. Partner or couple specific issues are not detectable in this disease phenotype.

2016 ◽  
Vol 75 (3) ◽  
pp. 74-84 ◽  
Author(s):  
A.E. Abaturov ◽  
◽  
E.A. Agafonova ◽  
N.I. Abaturova ◽  
V.L. Babich ◽  
...  

2021 ◽  
Vol 8 (8) ◽  
pp. 2004979
Author(s):  
Jun‐Young Park ◽  
Sung Jean Park ◽  
Jun Young Park ◽  
Sang‐Hyun Kim ◽  
Song Kwon ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Sonia George ◽  
Trevor Tyson ◽  
Nolwen L. Rey ◽  
Rachael Sheridan ◽  
Wouter Peelaerts ◽  
...  

Background: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α- synucleinopathies, such as Parkinson’s disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease. Objective To study the role of the adaptive immune system with respect to α-syn pathology. Methods: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. Results: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. Conclusion: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Alexander P. Hynes ◽  
Simon J. Labrie ◽  
Sylvain Moineau

ABSTRACT The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell’s “memory” of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural “memorization” process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. IMPORTANCE CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature. In industrial settings, natural CRISPR-Cas immunity is already exploited to generate strains resistant to potentially disruptive viruses. However, the natural process by which bacteria acquire new target specificities (adaptation) is difficult to study and manipulate. The target against which immunity is conferred is selected stochastically. By biasing the immunization process, we offer a means to generate customized immunity, as well as provide a new tool to study adaptation.


2012 ◽  
Vol 10 (1) ◽  
pp. 201 ◽  
Author(s):  
Gezina TML Oei ◽  
Kirsten F Smit ◽  
Djai vd Vondervoort ◽  
Daniel Brevoord ◽  
Arjan Hoogendijk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document