scholarly journals On Obtaining the Young Modulus from Numerical Analysis of Composite Material Constituent

2018 ◽  
Vol 55 (4) ◽  
pp. 712-717 ◽  
Author(s):  
Sorin Draghici ◽  
Horia Alexandru Petrescu ◽  
Anton Hadar

Importance and use of composite materials are no longer a subject that should be emphasized. They offer a successful replacement for classical materials in most areas of engineering, conferring similar elastic-mechanical properties to metal or non-metal alloys with several advantages such as reduced mass, chemical resistance etc. Considering this, knowledge of the elastic-mechanical characteristics is of utmost importance. The present article aims to create a finite element model that can predict the longitudinal elastic modulus of a double-layered composite material based on the elastic characteristics of its constituents. For this, the elastic characteristics of the constituents were determined, then used in the finite element analysis thus obtaining the Young�s modulus for the numerical composite material. Also, the longitudinal elastic modulus of the resultant composite was determined experimentally. The results of the finite element model were compared with experimental values.

2020 ◽  
Vol 70 (12) ◽  
pp. 4470-4476

In recent years the composites materials gained a major importance in all fields of engineering, because they offer a successful replacement for classical materials conferring similar elastic-mechanical properties to metal or non-metal alloys presenting several advantages such as reduced mass, chemical resistance etc. Considering this, during the design, dull knowledge of the elastic-mechanical characteristics is of high importance. The present paper aims to create a finite element model able to predict the shear elastic modulus of a double-layered composite material based on the elastic characteristics of its constituents. For this, once the elastic characteristics of the constituents determined, they could be used in the finite element analysis obtaining consequently the shear modulus for the composite material. Also, the shear elastic modulus of the resultant composite was determined experimentally. The results of the finite element model were compared to the experimental values in order to validate the finite element analyses results. Keywords: composites, fiberglass, shear modulus, FEM


2017 ◽  
Author(s):  
Saman Naghieh ◽  
Mohammad Reza Karamooz-Ravari ◽  
Mohsen Badrossamay ◽  
Ehsan Foroozmehr

In recent years, thanks to additive manufacturing technology, researchers have gone towards the optimization of bone scaffolds for the bone reconstruction. Bone scaffolds should have appropriate biological as well as mechanical properties in order to play a decisive role in bone healing. Since the fabrication of scaffolds is time consuming and expensive, numerical methods are often utilized to simulate their mechanical properties in order to find a nearly optimum one. Finite element analysis is one of the most common numerical methods that is used in this regard. In this paper, a parametric finite element model is developed to assess the effects of layers penetration׳s effect on inter-layer adhesion, which is reflected on the mechanical properties of bone scaffolds. To be able to validate this model, some compression test specimens as well as bone scaffolds are fabricated with biocompatible and biodegradable poly lactic acid using fused deposition modeling. All these specimens are tested in compression and their elastic modulus is obtained. Using the material parameters of the compression test specimens, the finite element analysis of the bone scaffold is performed. The obtained elastic modulus is compared with experiment indicating a good agreement. Accordingly, the proposed finite element model is able to predict the mechanical behavior of fabricated bone scaffolds accurately. In addition, the effect of post-heating of bone scaffolds on their elastic modulus is investigated. The results demonstrate that the numerically predicted elastic modulus of scaffold is closer to experimental outcomes in comparison with as-built samples.


2013 ◽  
Vol 357-360 ◽  
pp. 1473-1479
Author(s):  
Yan Qiao ◽  
Chuan Zhi Sun ◽  
Biao Zhang

in this paper, the theory of strain transfer of embedded BOTDA sensors was introduced. For the sensing fiber with coating and jacket used in project, its finite element model was built by ANSYS infinite element analysis software. And for the embedded fiber, the influences affected by elastic modulus and thickness of the fiber coating and jacket and elastic modulus of matrix material were analyzed. For the surface bonded fiber, the influences affected by elastic modulus, width and thickness of the bonding material were analyzed, and the results were compared with the results of theory.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


2014 ◽  
Vol 663 ◽  
pp. 668-674
Author(s):  
Azman Senin ◽  
Zulkifli Mohd Nopiah ◽  
Muhammad Jamhuri Jamaludin ◽  
Ahmad Zakaria

The Finite-Element Analysis (FEA) is a prediction methodology that facilitates product designers produced the part design with manufacturing focused. With the similar advantages, manufacturing engineers are capable of build the first actual car model from the new production Draw Die. This approach has eliminated the requirement to manufacture the prototype model from soft tool parts and soft tool press die. However, the prediction accuracy of FEA is a major topic of research work in automotive sector's practitioners and academia as current accuracy level is anticipated at 60%. The objective of works is to assess the prediction accuracy on deformation results from mass production stamped parts. The Finite-element model is developed from the CAD data of the production tools. Subsequently, finite-element model for production tools is discretized with shell elements to avoid computation errors in the simulation process. The sheet blank material with 1.5 mm and 2.0 mm thickness is discredited by shell (2D modeling) and solid elements (3D modeling) respectively. The input parameters for the simulation model for both elements are attained from the actual setup at Press Machine and Production Tool. The analysis of deformation and plastic strain are performed for various setup parameters. Finally, the deformation characteristic such as Forming Limit Diagram (FLD) and thinning are compared for all simulated models.


2013 ◽  
Vol 774-776 ◽  
pp. 25-29
Author(s):  
Cong Fang Hu ◽  
Yuan Qiang Tan

Based on the tandem sealing structure at the end of the shaft,a finite element model of rubber O-rings has been established and the sealing performance of rubber O-ring has been analyzed. There is an un-uniform compression among these O-rings which lead to the sealing failure. Under different friction factors, several groups of the rubber O-rings have been analyzed, finding that the friction factor is the reason of un-uniform compression. The effect of different average compression rate has been investigated, which has been integrated in the sealing criteria for the tandem O-rings, providing a reference for the optimization of tandem sealing structure at the end of the shaft. According to the sealing criteria for a single O-ring, the sealing criteria for the tandem O-rings is built.


Sign in / Sign up

Export Citation Format

Share Document