scholarly journals Comparative Studies on the Behaviour of Flat Panels Made of GRP Under Static and Dynamic Loads

2022 ◽  
Vol 58 (4) ◽  
pp. 222-237
Author(s):  
Costel Iulian Mocanu ◽  
Alin Pohilca ◽  
Liviu Moise ◽  
Daniela Ioana Tudose

Glass reinforced plastic, so called GRP, is a composite material made of glass strands called fibbers woven together to create a flexible fabric. GRP is a lightweight material with many and diverse applications ranging from the manufacture of reservoirs for different liquids to the manufacture of boats, yachts, chairs and even children playground furniture. The behaviour of this material under static and dynamic loads is still raising interest from the scientific community and a large number of researchers. This continued interest is due to the material versatility for different applications depending on its manufacture process that has a significant weigh-in in the material mechanical properties. These resulting mechanical properties need to be carefully analysed and benchmarked prior to using the obtained material in commercial applications. The scope of this research study is to analyse the behaviour of glass reinforced plastic plate panel with reinforcements on one and two directions under static and dynamic loads employing both experimental and numerical methods for results validation. The methods used in this research study for the dynamic loads can also be applied successfully to other composite materials. Additionally, the stress plots have been analysed in iteration in order to ensure the most optimal reinforcement pattern.

2014 ◽  
Vol 1061-1062 ◽  
pp. 748-750
Author(s):  
Heng Chen ◽  
Ke Sheng Ma

For socked and non-socketed piles in the different mechanical behavior under static and dynamic loads, the paper use ABAQUS to model, simulate the pile , the soil interlayer thickness between the bottom of the pile and bedrock are 2m, 4m under vertical load and Earthquake, cushion cap, pile and pile soil stress situation found non-socketed piles when the soil interlayer thickness within a certain range, the composite pile small subside under dynamic, static loads, the non-socketed piles can better take advantage of the pile soil has a good seismic performance in the earthquake.


2020 ◽  
Vol 27 (10) ◽  
pp. 2945-2958
Author(s):  
Peng Xiao ◽  
Di-yuan Li ◽  
Guo-yan Zhao ◽  
Quan-qi Zhu ◽  
Huan-xin Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Enlai Zhao ◽  
Enyuan Wang ◽  
Zesheng Zang ◽  
Xiaojun Feng ◽  
Rongxi Shen

The complex mechanical environment of deep coal and rock masses leads to obvious changes on their dynamic mechanical properties. However, there are few reports on the dynamic mechanical properties of rocks under the combined action of medium temperature (normal temperature ∼100°C) and static and dynamic loads. In this paper, a dynamic load and temperature combined action Hopkinson pressure bar experimental system is used to experimentally study the impact type of a fine sandstone under temperature conditions of 18°C, 40°C, 60°C, 80°C, and 100°C, an axial static load of 3 MPa, a gas chamber pressure of 0.06 MPa, and a constant temperature time of 4 h. The dynamic characteristics of the change law of the fine sandstone and the energy dissipation characteristics of the load process are analyzed, and the characteristic law of the fine sandstone surface response is analyzed using digital image correlation technology. Our results indicate the following. (1) Under conditions in which the other experimental conditions remain unchanged, the dynamic stress-strain of the fine sandstone presents a bimodal shape with a “rebound” phenomenon. Increasing temperature causes the peak strength of the fine sandstone to increase; however, the relative strength can increase or decrease. The relative increase in the strength is 1.14 MPa (°C) when the temperature increases from 40°C to 60°C, 0.15 MPa (°C) when the temperature increases from 60°C to 80°C, and 0.62 MPa (°C) when the temperature increases from 80°C to 100°C. (2) The digital image correlation results show that, under the action of a dynamic load stress wave, the fine sandstone experiences a displacement vector change on the sample surface; furthermore, under the combined action of the temperature and dynamic and static loads, the fine sandstone experiences macroscopic shear failure. The surface strain in the propagation direction of the stress wave is obviously higher and can even reach values of more than 10 times that of the strain in other directions. (3) From the perspective of energy dissipation, the incident energy, reflected energy, and dissipated energy of the fine sandstone under an impact load have the same change law. After being affected by a dynamic load, the energy rapidly increases to a certain value and then remains relatively stable. The transmitted energy is relatively small and can be approximated as a horizontal line. As the temperature increases, the incident energy, reflected energy, and dissipated energy tend to first decrease and then increase, and most of the incident energy in the fine sandstone is dissipated in the form of reflected waves.


2021 ◽  
Vol 11 (19) ◽  
pp. 8973
Author(s):  
Kun Zhong ◽  
Wusheng Zhao ◽  
Changkun Qin ◽  
Hou Gao ◽  
Weizhong Chen

Roof rocks in coal mines are subjected to the combination of in situ stresses and dynamic stresses induced by mining activities. Understanding the mechanical properties of roof rocks under static and dynamic loads at medium strain rates is of great significance to revealing the mechanism of rock bursts. In this study, we employ the digital image correlation (DIC) technique to investigate the energy concentration and dissipation behaviors, failure mode, and deformation characteristics of roof rocks under combined static and dynamic loads. Our results show that both the static pre-stress and dynamic loading rate have significant effects on the uniaxial compressive strength of rock specimens. From the energy principle, when the static pre-stress is the same, both elastic strain energy density and dissipated energy density increase with increasing dynamic loading rate. The hazard of rock bursts increases with decreasing static pre-stress and increasing dynamic loading rate. At higher dynamic loading rates, more cracks are generated, and the failure becomes more violent. The crack initiation, propagation and coalescence processes are identified, and the failure mode is closely related to the evolution of the global principal strain field of the rock specimens.


2009 ◽  
Vol 620-622 ◽  
pp. 137-140 ◽  
Author(s):  
Ying Cheng Hu ◽  
Fang Chao Cheng

Wood is one kind of renewable natural eco-material. Glued laminated timber (glulam) is an engineered wood product made from sawn lumber lamina glued together in horizontal layers. The application of glulam in the construction structure not only has great environmental value, but also reduces energy consumption and carbon emission of the construction. In this study, we evaluated the effects of different factors on the structural properties of glulam and designed several enhancement modes to reinforce the glulam with FRP (Fiber Reinforced Plastic). Then, we measured the mechanical properties of the glulam specimens in the different enhancement modes and selected the optimal reinforcement mode. The reinforcement method obviously increased the value of MOE and MOR of poplar glulam by 5%-15% and 5%-12% respectively. FRP length of 600mm was the optimal and most economic reinforcement length, and finger joint position of 300mm is the optimal position.


Author(s):  
Alireza Enshaeian ◽  
Piervincenzo Rizzo

Continuous welded rails (CWR) are track segments welded together to form a continuous miles-long track. With respect to mechanically-jointed rails, CWR are stronger, smoother, require less maintenance, and can be traveled at higher speeds. Despite these advantages, CWR are prone to fracture during cold seasons and to instability during warm seasons when the increase in the steel temperature induces extreme compression. To better understand buckling mechanism, engineers studied the structural behavior of rails under static and dynamic loads. Some of these models represent the basis of noninvasive methods to measure longitudinal stress. Both structural analyses and nondestructive evaluation methods are tools to predict the temperatures and the field conditions at which rails experience extreme tensile or compressive stress. This article reviews the last three decades of research and development on the structural analysis and nondestructive evaluation of CWR. The scope of this document is to provide a holistic view of the developments in rail engineering and nondestructive evaluation relevant to the problem of thermal buckling. Advantages and limitations of the analyses and of the nondestructive methods are discussed based upon the information available in the scientific literature. Additionally, any knowledge gap to be addressed by the scientific community in the years to come is identified and discussed.


2018 ◽  
Vol 63 (1) ◽  
pp. 32-40 ◽  
Author(s):  
A. E. Tarasov ◽  
E. R. Badamshina ◽  
D. V. Anokhin ◽  
S. V. Razorenov ◽  
G. S. Vakorina

2020 ◽  
Vol 2020 (12) ◽  
pp. 19-30
Author(s):  
Aleksandr Medvedskiy ◽  
Mihail Martirosov ◽  
Anton Homchenko ◽  
Darina Dedova

The purpose of this work is to investigate the impact of the inner defects of elliptical stratification type upon behavior of the rectangular carbon plastic plate at the impact of static and dynamic loads. The investigation methods: the problem is solved in a numerical way with the aid of a finite ele-ment method (FEM) in the LS-DYNA software com-plex (Livermore Software Technology Corp.). The investigation results: the distribution of stresses in plate layers under the impact of static and dynamic loads is obtained. The distribution of destruc-tion indices with the use of different destruction criteria for unidirectional composites (on the basis of carbon band) is defined. Conclusions: the impact of defects of the type of specified shape stratification, dimensions, amount and places of location with regard to the plate under consideration under the action of compressive static load does not practically tell. Under the action of the compressive dynamic load there is observed a noticeable impact of inner defects upon rectangular plate behavior.


Sign in / Sign up

Export Citation Format

Share Document