Synthesis, Characterization and Biological Activities of a Schiff Base Derived from 2-[(1,3-benzothiazol-2-yl)sulfanyl]-N-[4-(hydrazinecarbonyl)phenyl]acetamide and its Complexes with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) Ions

2019 ◽  
Vol 70 (2) ◽  
pp. 596-601
Author(s):  
Aqsa Gulzar ◽  
Tariq Mahmud ◽  
Liviu Mitu ◽  
Rubina Munir ◽  
Muhammad Imran ◽  
...  

A new Schiff base ligand from 2-[(1,3-benzothiazol-2-yl)sulfanyl]-N-[4-(hydrazinecarbonyl)phenyl]acetamide (BHA) and its five metal complexes with transition metal ions [Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized. The resulting compounds were subsequently characterized by FTIR, UV-Vis, AAS, 1H NMR, 13C NMR and mass spectrometry. The proposed geometries of the Schiff base metal complexes were established on the basis of metal / ligand ratio, through AAS/ICP, electronic spectroscopy and magnetic data. The synthesized Schiff base and its complexes were further investigated for their anti-inflammatory and anticancer activity which exhibited relatively pronounced activity for metal complexes than Schiff base.

2021 ◽  
Vol 1231 ◽  
pp. 129946
Author(s):  
Bushra Naureen ◽  
G.A. Miana ◽  
Khadija Shahid ◽  
Mehmood Asghar ◽  
Samreen Tanveer ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 675-681

Metal complexes synthesized from Schiff bases and furthermore Schiff bases are versatile in nature. Such types of compounds were prepared from the condensation of an amino compound with carbonyl compounds (aldehyde or ketone) during which the carbonyl group is replaced by an imine or azomethine group. Schiff bases and their derivatives are widely employed in industries, polymers, dyes and medicative and pharmaceutical fields and additionally exhibit biological activities like antibacterial, antifungal, anti-inflammatory, antimalarial, antiviral, and antipyretic properties. Many Schiff base metal complexes exhibit glorious catalytic activities in numerous mechanisms. Their several applications in homogenous and heterogeneous catalysis were according troughout last decade. Several Schiff base complexes were helpful for their application as catalysts in reactions involving at high temperatures because of the high thermal and moisture stabilities. This text totally based on literature review with examples of the most promising applied Schiff bases and their complexes in several areas, summarizing the applications of Schiff bases and their numerous derivatives and complexes.


2019 ◽  
Vol 1 ◽  
pp. 202-208
Author(s):  
S A Agbese ◽  
G A Shallangwa ◽  
S O Idris

The Schiff base was synthesized by condensing 4-aminopyridine with 4-hydroxypropiophenone. The synthesized ligand was characterized by proton and carbon-13 NMR spectroscopy, electronic spectroscopy and FTIR.The result of the FTIR showed the presence of a band at 1643.41cm-1 assigned to the azomethine bond, also the result of the 1HNMR and 13CNMR gave credence to the successful synthesis of the Schiff base. The Mn(II) and Zn(II) complexes were characterized by UV-visible analysis, FTIR, molar conductivity measurement and magnetic susceptibility test. The results of the FTIR suggest that the metal complexes possess coordinated water molecules and the shift in the wavenumber of the azomethine linkage in the spectra of the complexes shows that the nitrogen of the imine bond participated in the coordination to the metal centre. The magnetic susceptibility measurement shows that the metal complexes possess octahedral geometry. The molar conductivity test shows that the complexes are nonelectrolytic in nature and the metal to ligand ratio is 1:2. The synthesized ligand and the metal complexes were evaluated for biological activities against some organisms. The Zn(II) complex showed significant activity against the test organisms.


2018 ◽  
Vol 68 (12) ◽  
pp. 2845-2849
Author(s):  
Muhammad Liaqat ◽  
Tariq Mahmud ◽  
Muhammad Ashraf ◽  
Muhammad Muddassar ◽  
Muhammad Imran ◽  
...  

The titled Mannich base 2-[(3,4-dimethoxyphenyl)(pyrrolidin-1-yl)methyl]cyclohexanone (DPC) was synthesized by condensing 3,4-dimethoxybenzaldehyde, pyrrolidine and cyclohexanone. The synthesis was carried out by using ethanol as solvent. The development of the reaction was monitored on TLC. The complexation of synthesized Mannich base was carried out with Cu(II) chloride, Co(II) chloride, Ni(II) chloride and Fe(II) chloride. The structures of the synthesized Mannich base and its complexes were confirmed by FT-IR, UV-Vis, 1H-NMR, 13C-NMR, MS and TGA techniques. The proposed geometries of the metal complexes were established on the basis of metal/ligand ratio through AAS/ICP and electronic spectra. The synthesized compounds were evaluated for their antiurease and antibacterial activities. The complex with Co(II) show potent antiurease and antibacterial activity. The nature of SAR of Co(II) has been demonstrated using docking studies.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2020 ◽  
Vol 16 ◽  
Author(s):  
Meghshyam K. Patil ◽  
Vijay H. Masand ◽  
Atish K. Maldhure

: Schiff bases and their complexes are versatile compounds, which have been synthesized from the condensation of carbonyl compounds with amino compounds and exhibit a broad range of applications in biological, medicinal, catalysis, and industrial purposes. Furthermore, Schiff base-metal complexes have been used as a precursor for the synthesis of different metal oxides, which includes oxides of iron, cobalt, copper, nickel, manganese, vanadium, cadmium, zinc, mercury, etc. and ferrites such as Fe3O4, ZnFe2O4, and ZnCo2O4. These metal oxides have been utilized for several applications, which includes as a catalyst for several organic transformations and for biological activity. This review encompasses different methods of synthesis of metal oxides using Schiff base metal complexes precursor, their characterization, and various applications in detail.


2009 ◽  
Vol 27 (9) ◽  
pp. 1697-1702 ◽  
Author(s):  
Yinli Zhang ◽  
Sanping Chen ◽  
Guang Fan ◽  
Zhijie Zhao ◽  
Shengli Gao

Sign in / Sign up

Export Citation Format

Share Document