scholarly journals The Effect of Rehabilitation Program on Improving Skeletal Divergence According to Designed Program for Women after Birth

2021 ◽  
Vol 33 (4) ◽  
pp. 105-115
Author(s):  
Mariam Ahmed Ibraheem ◽  
Wassan Saeed Rasheed

          The problem of the research lies in women after pregnancy suffering from skeletal divergence due to long periods of pregnancy accompanied by weight gain, lack of movement, and mechanical variances. The researchers aimed at designing an apparatus for identifying skeletal divergence in women after birth as well as designing a rehabilitation program for correcting this divergence. The researchers applied the research on (7) women aged (24 – 32) years old who gave birth 48 – 58 before starting this study and after the doctor’s consent. The results showed a great improvement in all variables under study.

2019 ◽  
Vol 4 (6) ◽  
pp. 1399-1405 ◽  
Author(s):  
Jennifer Christy

Purpose The purpose of this article was to provide a perspective on vestibular rehabilitation for children. Conclusion The developing child with vestibular dysfunction may present with a progressive gross motor delay, sensory disorganization for postural control, gaze instability, and poor perception of motion and verticality. It is important that vestibular-related impairments be identified early in infancy or childhood so that evidence-based interventions can be initiated. A focused and custom vestibular rehabilitation program can improve vestibular-related impairments, enabling participation. Depending on the child's age, diagnosis, severity, and quality of impairments, vestibular rehabilitation programs may consist of gaze stabilization exercises, static and dynamic balance exercises, gross motor practice, and/or habituation exercises. Exercises must be modified for children, done daily at home, and incorporated into the daily life situation.


2008 ◽  
Vol 42 (5) ◽  
pp. 30
Author(s):  
Kerri Wachter
Keyword(s):  

2019 ◽  
Vol 25 ◽  
pp. 268-269
Author(s):  
Bolanle Okunowo ◽  
Ifedayo Odeniyi ◽  
Oluwarotimi Olopade ◽  
Olufemi Fasanmade ◽  
Omololu Adegbola ◽  
...  

2005 ◽  
Vol 94 (0) ◽  
pp. 50b-50
Author(s):  
J Holm ◽  
M Gamborg ◽  
S Gammeltoft ◽  
L Ward ◽  
B Heitmann ◽  
...  

2005 ◽  
Vol 75 (5) ◽  
pp. 357-368 ◽  
Author(s):  
Foote ◽  
Nonnecke† ◽  
Waters ◽  
Palmer ◽  
Beitz ◽  
...  

Effects of increased protein and energy provided by an intensified milk replacer on the antigen-specific, cell-mediated immune response of the neonatal calf were examined. Calves were fed a standard (0.45 kg/day of a 20% crude protein, 20% fat milk replacer; n = 11) or intensified (1.14 kg/day of a 28% crude protein, 20% fat milk replacer; n = 11) diet from 0 to 6 weeks of age. All calves were vaccinated with Mycobacterium bovis bacillus Calmette-Guerin (BCG) at 1 week of age. The daily weight gain of intensified-diet calves (0.62 kg/day) was greater than the weight gain of standard-diet calves (0.29 kg/day). Liver, kidney, heart, thymus, and subcervical lymph nodes from intensified-diet calves were heavier than the same organs from standard-diet calves. Flow cytometric analysis of peripheral blood mononuclear cell (PBMC) populations indicated that CD4+ cells, gamma delta TCR+ cells, and monocyte percentages, although unaffected by diet during the first 5 weeks of the study, were higher in intensified-diet calves at week 6. The decline in gamma deltad TCR+ cell percentages and increase in B cell percentages with increasing age seen in all calves are characteristic of the maturing immune system of the calf. CD8+ T cell or B cell percentages were not affected by diet. In intensified-diet calves, percentages of CD4+ expressing interleukin-2 receptor increased and percentages of gamma delta TCR+ cells expressing interleukin-2 receptor decreased with time. The same populations in standard-diet calves did not change with time. Percentages of CD4+ and CD8+ T cells, and B cells expressing MHC class II antigen, were unaffected by diet or age. Although mitogen-induced interferon (IFN)-gamma and nitric oxide (NO) secretion increased with age for all calves, PBMC from intensified-diet calves produced less IFN-gamma and more NO than did cells from standard-diet calves at week 6 of the study. Antigen-induced secretion of IFN-gamma and NO also increased with age but was unaffected by diet. Antigen-elicited delayed-type hypersensitivity was unaffected by diet, suggesting increased dietary protein and energy did not alter adaptive immunity in vivo. Overall, these results suggest that feeding calves a commercially available, intensified milk replacer affects minimally the composition and functional capacities of PBMC populations. Additional research is necessary to determine whether these subtle effects influence the calf’s susceptibility to infectious disease.


Sign in / Sign up

Export Citation Format

Share Document