scholarly journals BMP-2 Immoblized in BCP-Chitosan-Hyaluronic Acid Hybrid Scaffold for Bone Tissue Engineering

2014 ◽  
Vol 24 (12) ◽  
pp. 704-709 ◽  
Author(s):  
Subrata Deb Nath ◽  
Celine Abueva ◽  
Swapan Kumar Sarkar ◽  
Byong Taek Lee
RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 10118-10128 ◽  
Author(s):  
Lu Wang ◽  
Min Fang ◽  
Yijing Xia ◽  
Jiaxin Hou ◽  
Xiaoru Nan ◽  
...  

A novel SF/nHAp/GO hybrid scaffold with oriented channel-like structure in bone tissue engineering.


2012 ◽  
Vol 7 (1) ◽  
pp. 44 ◽  
Author(s):  
M. Rubert ◽  
M. Alonso-Sande ◽  
M. Monjo ◽  
J. M. Ramis

2019 ◽  
Vol 30 (3) ◽  
pp. 777-783 ◽  
Author(s):  
Daniel Goncalves Boeckel ◽  
Patrícia Sesterheim ◽  
Thiago Rodrigues Peres ◽  
Adolpho Herbert Augustin ◽  
Krista Minéia Wartchow ◽  
...  

2017 ◽  
Vol 133 ◽  
pp. 69-81 ◽  
Author(s):  
Bishnu Kumar Shrestha ◽  
Sita Shrestha ◽  
Arjun Prasad Tiwari ◽  
Jeong-In Kim ◽  
Sung Won Ko ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Siyi Wang ◽  
Rong Li ◽  
Yongxiang Xu ◽  
Dandan Xia ◽  
Yuan Zhu ◽  
...  

Poly-ε-caprolactone (PCL) is a promising synthetic material in bone tissue engineering (BTE). Particularly, the introduction of rapid prototyping (RP) represents the possibility of manufacturing PCL scaffolds with customized appearances and structures. Bio-Oss is a natural bone mineral matrix with significant osteogenic effects; however, it has limitations in being constructed and maintained into specific shapes and sites. In this study, we used RP and fabricated a hollow-structured cage-shaped PCL scaffold loaded with Bio-Oss to form a hybrid scaffold for BTE. Moreover, we adopted NaOH surface treatment to improve PCL hydrophilicity and enhance cell adhesion. The results showed that the NaOH-treated hybrid scaffold could enhance the osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMMSCs) both in vitro and in vivo. Altogether, we reveal a novel hybrid scaffold that not only possesses osteoinductive function to promote bone formation but can also be fabricated into specific forms. This scaffold design may have great application potential in bone tissue engineering.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document