scholarly journals Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating

2019 ◽  
Vol 29 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jeong-Min Kim ◽  
◽  
Il-Hyun Kim ◽  
Hyun-Gil Kim
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2013 ◽  
Vol 651 ◽  
pp. 198-203
Author(s):  
Xiu Ling Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang

It is significant and necessary to carry out the research and development of self-lubricating bearing. The current study of metal matrix self-lubricating bearing materials is summarized. A new type of high temperature self-lubricating Ti-Al alloy bearing materials is proposed. It is light, anti-friction, anti-corrosion and high temperature resistance (600 °C). The future trend is introduced in the end of this paper.


1994 ◽  
pp. 321-324
Author(s):  
Mieko OKAMOTO ◽  
Isao Tomizuka ◽  
Akimitsu MIYAZAKI

Applied laser ◽  
2014 ◽  
Vol 34 (6) ◽  
pp. 567-571
Author(s):  
张智慧 Zhang Zhihui ◽  
董世运 Dong Shiyun ◽  
王玉江 Wang Yujiang ◽  
徐滨士 Xu Binshi ◽  
何鹏 He Peng ◽  
...  

2018 ◽  
Vol 243 ◽  
pp. 00010 ◽  
Author(s):  
Ilya Zhukov ◽  
Vladimir Promakhov ◽  
Yana Dubkova ◽  
Alexey Matveev ◽  
Mansur Ziatdinov ◽  
...  

The paper presents microstructure, composition, and burning rate of Al alloy produced by high-temperature synthesis (SHS) from powder mixture Al-Ti-B4C with different concentration of Al powder. It has been established that the phase composition of materials obtained at gas-free combustion includes TiB2, Al, and TiC. It is shown that Al content growth powder in initial Al-Ti- B4C mixture from 7.5 to 40 wt.% reduces the burning rate of the powder from 9*10-3 to 1.8*10-3 m/s. For the system consisting of 60 wt.% of (Ti + B4C) and 40 wt.% of Al there is the increase in the porosity of the compacted initial powder mixture from 30 to 51 and reduction in the burning rate from 1.8 * 10-3 to 1 * 10-3 m/s. The introduction of 0.2 wt.% of the obtained SHS materials into the melt of pure aluminum causes reduction of the grain size of the resulting alloy from 1200 to 410 μm.


Sign in / Sign up

Export Citation Format

Share Document