scholarly journals Risk Assessment and Potentiality Analysis of Soil Loss at the Nakdong River Watershed Using the Land Use Map, Revised Universal Soil Loss Equation, and Landslide Risk Map

2012 ◽  
Vol 45 (6) ◽  
pp. 617-629 ◽  
Author(s):  
Un Ji ◽  
Man-Ha Hwang ◽  
Woon-Kwang Yeo ◽  
Kwang-Suop Lim
Author(s):  
Sumayyah Aimi Mohd Najib

To determine the soil erosion in ungauged catchments, the author used 2 methods: Universal Soil Loss Equation model and sampling data. Sampling data were used to verify and validate data from model. Changing land use due to human activities will affect soil erosion. Land use has changed significantly during the last century in Pulau Pinang. The main rapid changes are related to agriculture, settlement, and urbanization. Because soil erosion depends on surface runoff, which is regulated by the structure of land use and brought about through changes in slope length, land-use changes are one of many factors influencing land degradation caused by erosion. The Universal Soil Loss Equation was used to estimate past soil erosion based on land uses from 1974 to 2012. Results indicated a significant increase in three land-use categories: forestry, built-up areas, and agriculture. Another method to evaluate land use changes in this study was by using landscape metrics analysis. The mean patch size of built-up area and forest increased, while agriculture land use decreased from 48.82 patches in 1974 to 22.46 patches in 2012. Soil erosion increased from an estimated 110.18 ton/km2/year in 1974 to an estimated 122.44 ton/km2/year in 2012. Soil erosion is highly related (R2 = 0.97) to the Shannon Diversity Index, which describes the diversity in land-use composition in river basins. The Shannon Diversity Index also increased between 1974 and 2012. The findings from this study can be used for future reference and for ungauged catchment research studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manish Olaniya ◽  
Pradip Kumar Bora ◽  
Susanta Das ◽  
Pukhrambam Helena Chanu

Abstract In absence of soil erosion plots for determination of erodibility index (K) for erosion models like Universal Soil Loss Equation (USLE) or Revised Universal Soil Loss Equation (RUSLE) to estimate soil erosion, empirical relations are used. In the present study, soil erodibility index was determined for entire Ri-bhoi district of Meghalaya based on soil physical and chemical properties through empirical relationship and presented in a map form. Dominant land uses of the district were identified through geo-spatial tools which were viz. agriculture, forest, jhum land and wasteland. Soil samples from surface depth (01–15 cm) were collected from areas of different dominant land uses. Twenty five sampling points were selected under each land use type and geo-coded them on the base map of Ri-bhoi district. Apart from K-index, Clay Ratio, Modified Clay Ratio and Critical Soil Organic Matter were also determined for understanding the effect of primary soil particles on erodibility. In agriculture land use system K-index values were found in the range of 0.08–0.41 with an average of 0.25 ± 0.02. In case of jhum, forest and wasteland these were in the range of 0.08–0.42 with an average of 0.20 ± 0.01; 0.09–0.40 with an average of 0.22 ± 0.02, and 0.10–0.34 with an average value of 0.23 ± 0.02, respectively. Clay ratio (2.74) and Modified clay ratio (2.41) were observed to be higher in forest LUS, lower clay ratio (1.97) and modified clay ratio (1.81) were found in the wasteland indicating erosion susceptibility in forested area. The values of Critical Level of Organic Matter (CLOM) for the district ranged from 4.72 to 16.56. Out of 100 samples, only one sample had CLOM value less than 5 and rest 99 samples had values more than 5 indicating that the soils of the district had moderate to stable soil structure and offer resistance to erosion. All the indices values of geo-coded points were then interpolated in the Arc-GIS environment to produce land use based maps for Ri-bhoi district of Meghalaya. As K-index is a quantitative parameter which is used in models, the index can be then interpolated for estimation of soil erosion through USLE or RUSLE for any given situation.


2007 ◽  
Vol 26 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Jin-Ho Kim ◽  
Chan-Yong Kim ◽  
Seong-Tae Lee ◽  
Chul-Mann Choi ◽  
Goo-Bok Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document