scholarly journals A CTR Prediction Approach for Text Advertising Based on the SAE-LR Deep Neural Network

Author(s):  
Jiang Zilong ◽  
Gao Shu ◽  
Dai Wei
PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0190831 ◽  
Author(s):  
Zilong Jiang ◽  
Shu Gao ◽  
Mingjiang Li

2021 ◽  
Vol 6 (9) ◽  
pp. 129
Author(s):  
T. Pradeep ◽  
Abidhan Bardhan ◽  
Avijit Burman ◽  
Pijush Samui

The majority of natural ground vibrations are caused by the release of strain energy accumulated in the rock strata. The strain reacts to the formation of crack patterns and rock stratum failure. Rock strain prediction is one of the significant works for the assessment of the failure of rock material. The purpose of this paper is to investigate the development of a new strain prediction approach in rock samples utilizing deep neural network (DNN) and hybrid ANFIS (adaptive neuro-fuzzy inference system) models. Four optimization algorithms, namely particle swarm optimization (PSO), Fireflies algorithm (FF), genetic algorithm (GA), and grey wolf optimizer (GWO), were used to optimize the learning parameters of ANFIS and ANFIS-PSO, ANFIS-FF, ANFIS-GA, and ANFIS-GWO were constructed. For this purpose, the necessary datasets were obtained from an experimental setup of an unconfined compression test of rocks in lateral and longitudinal directions. Various statistical parameters were used to investigate the accuracy of the proposed prediction models. In addition, rank analysis was performed to select the most robust model for accurate rock sample prediction. Based on the experimental results, the constructed DNN is very potential to be a new alternative to assist engineers to estimate the rock strain in the design phase of many engineering projects.


2018 ◽  
Vol 8 (11) ◽  
pp. 2332 ◽  
Author(s):  
Hung Nguyen ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Exact evaluation of the degradation levels in bearing defects is one of the most essential works in bearing condition monitoring. This paper proposed an efficient evaluation method using a deep neural network (DNN) for correct prediction of degradation levels of bearings under different crack size conditions. An envelope technique was first used to capture the characteristic fault frequencies from acoustic emission (AE) signals of bearing defects. Accordingly, a health-related indicator (HI) calculation was performed on the collected envelope power spectrum (EPS) signals using a Gaussian window method to estimate the fault severities of bearings that served as an appropriate dataset for DNN training. The proposed DNN was then trained for effective prediction of bearing degradation using the Adam optimization-based backpropagation algorithm, in which the synaptic weights were optimally initialized by the Xavier initialization method. The effectiveness of the proposed degradation prediction approach was evaluated through different crack size experiments (3, 6, and 12 mm) of bearing faults.


Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Author(s):  
Ala Supriya ◽  
Chiluka Venkat ◽  
Aliketti Deepak ◽  
GV Hari Prasad

Sign in / Sign up

Export Citation Format

Share Document