scholarly journals Implementation of Multicore-Aware Load Balancing on Clusters through Data Distribution in Chapel

2012 ◽  
Vol 19A (3) ◽  
pp. 129-138
Author(s):  
Bon-Gen Gu ◽  
Patrick Carpenter ◽  
Weikuan Yu
2020 ◽  
Vol 1546 ◽  
pp. 012003
Author(s):  
O V Denisov ◽  
E O Vikulov

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 546
Author(s):  
Kyoungsoo Bok ◽  
Kitae Choi ◽  
Dojin Choi ◽  
Jongtae Lim ◽  
Jaesoo Yoo

As digital data have increased exponentially due to an increasing number of information channels that create and distribute the data, distributed in-memory systems were introduced to process big data in real-time. However, when the load is concentrated on a specific node in a distributed in-memory environment, the data access performance is degraded, resulting in an overall degradation in the processing performance. In this paper, we propose a new load balancing scheme that performs data migration or replication according to the loading status in heterogeneous distributed in-memory environments. The proposed scheme replicates hot data when the hot data occurs on the node where a load occurs. If the load of the node increases in the absence of hot data, the data is migrated through a hash space adjustment. In addition, when nodes are added or removed, data distribution is performed by adjusting the hash space with the adjacent nodes. The clients store the metadata of the hot data and reduce the access of the load balancer through periodic synchronization. It is confirmed through various performance evaluations that the proposed load balancing scheme improves the overall load balancing performance.


Information sharing among the associations is a general development in a couple of zones like business headway and exhibiting. As bit of the touchy principles that ought to be kept private may be uncovered and such disclosure of delicate examples may impacts the advantages of the association that have the data. Subsequently the standards which are delicate must be secured before sharing the data. In this paper to give secure information sharing delicate guidelines are bothered first which was found by incessant example tree. Here touchy arrangement of principles are bothered by substitution. This kind of substitution diminishes the hazard and increment the utility of the dataset when contrasted with different techniques. Examination is done on certifiable dataset. Results shows that proposed work is better as appear differently in relation to various past strategies on the introduce of evaluation parameters.


Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


Sign in / Sign up

Export Citation Format

Share Document