Comparison of Antioxidant Components and Antioxidant Activities of Colored Rice Varieties (Oryza sativa L.) Cultivated in Southern Plain

2016 ◽  
Vol 45 (8) ◽  
pp. 1214-1220 ◽  
Author(s):  
Ji-Young Park ◽  
Hyeonmi Ham ◽  
Sang-Ik Han ◽  
Sung-Hwan Oh ◽  
You Chun Song ◽  
...  
2017 ◽  
Vol 7 (3) ◽  
pp. 195 ◽  
Author(s):  
Rattanamanee Chomchan ◽  
Sunisa Siripongvutikorn ◽  
Panupong Puttarak ◽  
Rungtip Rattanapon

Background: Young ricegrass (Oryza sativa L.) can be introduced as one of functional food product since sprouts have been much interested in this era due to their high nutritive values. Bio-fortification of selenium is one strategy to enhance plant bioactivity. However, the level of selenium used is varied among species of plants, hence, the proper level needs to be explored.Objective: To investigate the influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass.Methods: Sodium selenite ranging 0, 10, 20, 30 and 40 mg Se/L has been hydroponically bio-fortified into ricegrass then grown for 8 d and investigated the changes of growth characteristics, selenium content, accumulation of bioactive compounds and anti-oxidative properties.Results:  Results revealed that selenium bio-fortified exogenously increased the accumulation of selenium in ricegrass by 529% at 40 mg Se/L treatment without negatively changes in leaves biomass at the day of harvesting. However, root part weight slightly decreased when increased selenium level. Selenium at concentration of 10 and 20 mg Se/L can stimulate the production of phenolic compounds and antioxidant activities in young ricegrass as measured by DPPH, ABTS, FRAP and chelating assay. Conversely, higher level of selenium fortification reduced the accumulation of phenolics in ricegrass may due to pro-oxidant expression.Conclusion: Selenium bio-fortification can be used as a useful technique to improve quality of ricegrass plantation. 10 mg Se/L treatment was an ideal to trigger the synthesis of phenolics which exhibited high antioxidant activities. While, 40 mg Se/L treatment was ultimate for the production of Se plant foods.Keywords: Antioxidant activities; Bio-fortification; Ricegrass; Selenium


Author(s):  
P. Savitha ◽  
R. Usha Kumari

Rice (Oryza sativa L.) which belongs to the family poaceae, is the life and the prince among cereals as this unique grain helps to sustain two thirds of the world's population. India have traditionally been used or rice cultivation due to availability of water and conductive soil (Nadesa panic). Rice was grown in 155.30 million hectares and around 600 million tonnes of rice harvested each year globally. About 114 countries produce rice with China and India supporting 50 per cent of total production. India stands first in area under cultivation (41.85 mha) and ranks second in production, where as China ranks first in production with just half of the area. India's production is 89.13 million tonnes with a productivity of 2130 kg/ha. Among the rice producing states of India, Tamil Nadu ranks sixth in production (6.53 million tonnes) and second in productivity of 3918 kg/ha with an area of 20.16 lakh ha (Season and Crop Report, 2012). Local farmers in such farming systems retain the traditional varieties based on their knowledge of the quality of the rice varieties and their adaptation to varying agro-ecological situations created by diverse seasons and land situations (Tapasi das & Ashesh Kumar Das, 2014). Among the major micronutrient deficiencies common in rice consuming countries, iron and zinc deficiencies (“hidden hunger”), affect over three billion people worldwide, mostly in developing countries (Welch & Graham, 2004).


2019 ◽  
Vol 24 (3) ◽  
pp. 376-387 ◽  
Author(s):  
Doan Cong Dien ◽  
Thieu Thi Phong Thu ◽  
Kyi Moe ◽  
Takeo Yamakawa

2011 ◽  
Vol 117 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Ulaiwan Usansa ◽  
Felix Burberg ◽  
Eberhard Geiger ◽  
Werner Back ◽  
Chokchai Wanapu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document