scholarly journals Inhibitory effect of Polo-like kinase 1 depletion on mitosis and apoptosis of gastric cancer cells

2006 ◽  
Vol 12 (1) ◽  
pp. 29 ◽  
Author(s):  
Xue-Hua Chen ◽  
Bin Lan ◽  
Ying Qu ◽  
Xiao-Qing Zhang ◽  
Qu Cai ◽  
...  
Author(s):  
Jifu Song ◽  
Zhibin Guan ◽  
Maojiang Li ◽  
Sha Sha ◽  
Chao Song ◽  
...  

MicroRNAs (miRNAs) have emerged as pivotal regulators of the development and progression of gastric cancer. Studies have shown that miR-154 is a novel cancer-associated miRNA involved in various cancers. However, the role of miR-154 in gastric cancer remains unknown. Here we aimed to investigate the biological function and the potential molecular mechanism of miR-154 in gastric cancer. We found that miR-154 was significantly downregulated in gastric cancer tissues and cell lines. The overexpression of miR-154 significantly repressed the growth and invasion of gastric cancer cells. Bioinformatics analysis and Dual-Luciferase Reporter Assay data showed that miR-154 directly targeted the 3′-untranslated region of Dishevelled‐Axin domain containing 1 (DIXDC1). Real-time quantitative polymerase chain reaction and Western blot analyses showed that miR-154 overexpression inhibited DIXDC1 expression. An inverse correlation of miR-154 and DIXDC1 was also demonstrated in gastric cancer specimens. Overexpression of miR-154 also significantly suppressed the activation of WNT signaling. Moreover, restoration of DIXDC1 expression significantly reversed the inhibitory effect of miR-154 overexpression on the cell proliferation, invasion, and WNT signaling in gastric cancer cells. Overall, these results suggest that miR-154 inhibits gastric cancer cell growth and invasion by targeting DIXDC1 and could serve as a potential therapeutic target for the treatment of gastric cancer.


2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Wenjuan Zhou ◽  
Liying Ma ◽  
Jing Yang ◽  
Hui Qiao ◽  
Lingyu Li ◽  
...  

Abstract Human mutT homolog 1(MTH1), the oxidized dNTP pool sanitizer enzyme, has been reported to be highly expressed in various malignant tumors. However, the oncogenic role of MTH1 in gastric cancer remains to be determined. In the current study, we found that MTH1 was overexpressed in human gastric cancer tissues and cells. Using an in vitro MTH1 inhibitor screening system, the compounds available in our laboratory were screened and the small molecules containing 5-cyano-6-phenylpyrimidine structure were firstly found to show potently and specifically inhibitory effect on MTH1, especially compound MI-743 with IC50 = 91.44 ± 1.45 nM. Both molecular docking and target engagement experiments proved that MI-743 can directly bind to MTH1. Moreover, MI-743 could not only inhibit cell proliferation in up to 16 cancer cell lines, especially gastric cancer cells HGC-27 and MGC-803, but also significantly induce MTH1-related 8-oxo-dG accumulation and DNA damage. Furthermore, the growth of xenograft tumours derived by injection of MGC-803 cells in nude mice was also significantly inhibited by MI-743 treatment. Importantly, MTH1 knockdown by siRNA in those two gastric cancer cells exhibited the similar findings. Our findings indicate that MTH1 is highly expressed in human gastric cancer tissues and cell lines. Small molecule MI-743 with 5-cyano-6-phenylpyrimidine structure may serve as a novel lead compound targeting the overexpressed MTH1 for gastric cancer treatment.


2016 ◽  
Vol 38 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
Lei Li ◽  
Lian-Mei Zhao ◽  
Su-li Dai ◽  
Wen-Xuan Cui ◽  
Hui-Lai Lv ◽  
...  

Background/Aims: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. Methods: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. Results: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. Conclusion: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


2014 ◽  
Vol 13 (3) ◽  
pp. 6786-6803 ◽  
Author(s):  
Y.H. Li ◽  
M. Chen ◽  
M. Zhang ◽  
X.Q. Zhang ◽  
S. Zhang ◽  
...  

2010 ◽  
Vol 29 (8) ◽  
pp. 752-760 ◽  
Author(s):  
Ye Zhao ◽  
Jian-Sheng Li ◽  
Ming-Zhou Guo ◽  
Bai-Sui Feng ◽  
Jin-Ping Zhang

Sign in / Sign up

Export Citation Format

Share Document