XX.—The Metamorphism of the Deeside Limestone, Aberdeenshire

1933 ◽  
Vol 57 (2) ◽  
pp. 557-592 ◽  
Author(s):  
Arthur G. Hutchison

The limestone to be described occurs in two separate areas (fig. 1)—one in Lower Deeside around Banchory, another in Middle Deeside around Aboyne. The whole of the Banchory and a large part of the Aboyne outcrops provide limestone types in a high grade of regional metamorphism (the associated schists contain sillimanite). In the latter outcrop the limestone has undergone thermal metamorphism at the contacts with Newer Granite intrusions. Many of the resulting hornfelses have suffered hydrothermal alterations with development of prehnite and zeolites. Newer Granite pegmatites, intruded at the time of hornfelsing, share in this hornfelsing and later hydrothermal modifications. In addition, they exercise exopneumatolytic and exohydrothermal metamorphism. Quite local metamorphisms take place at hornblende-schist and Older Granite contacts.

1985 ◽  
Vol 49 (354) ◽  
pp. 649-654 ◽  
Author(s):  
N. S. Angus ◽  
R. Middleton

AbstractHögbomite occurs in two contrasting mineral assemblages within the Currywongaun-Dough-ruagh intrusion of north Connemara: a cordierite-rich pelitic xenolith and an orthopyroxenite. In the latter, högbomite and green spinel form blebs within magnetite-ilmenite grains. The högbomite displays significant compositional variation from grain to grain: TiO2 (3.0–6.3%), FeO (21.6–21.3%), MgO (10.0–7.5%), ZnO (3.6–2.4%). This chemical heterogeneity appears to represent variable degrees of partial substitution of Mg and Zn by Ti, in the replacement of spinel by högbomite. By contrast, in the cordierite-hornfels, the högbomite compositions are more notably enriched in iron: TiO2 (4.7–7.0%), FeO (29.6–24.3%), MgO (4.2–6.2%), ZnO (2.7–2.1%). This iron-rich högbomite appears to have formed primarily by interaction between opaque ore and adjacent cordierite, rather than by replacement of spinel.Two high-grade metamorphic episodes appear to be necessary for högbomite growth, one determining chemical composition and the other appropriate physical parameters. In the Connemara occurrences thermal metamorphism and partial melting, coupled with contamination of the surrounding magma, controlled the formation of mineral assemblages rich in Fe, Mg, Al, Ti, and Zn. Emplacement of the intrusion was accompanied by amphibolite facies regional metamorphism and it is to this metamorphic event that the growth of högbomite may be attributed.


1952 ◽  
Vol 89 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Germaine A. Joplin

AbstractIn an attempt to dissect the granitization process in an area of regional metamorphism, it is suggested that granite is forcibly injected during strong compression, that the compressional wave passes upwards and outwards in advance of the magma, and that several changes take place before its arrival. Six stages in this process are recognized in the Cooma and Albury districts of N.S.W.: (1) Regional Metamorphism, (2) Superimposed Thermal Metamorphism, (3) Permeation without Magmatic Addition, (4) Addition from an Attenuated Magma, (5) Formation of a Potassic Wave-Front, and (6) Injection of the Magma as Concordant Intrusions. The conditions favouring granitization are discussed and the question of basic fronts is considered.


1998 ◽  
Vol 62 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Anju Tiwary ◽  
Mihir Deb ◽  
Nigel J. Cook

AbstractPyrite is an ubiquitous constituent of the Proterozoic massive sulphide deposit at Deri, in the South Delhi Fold Belt of southern Rajasthan. Preserved pyrite microfabrics in the Zn-Pb-Cu sulphide ores of Deri reveal a polyphase growth history of the iron sulphide and enable the tectono-thermal evolution of the deposit to be reconstructed.Primary sedimentary features in Deri pyrites are preserved as compositional banding. Regional metamorphism from mid-greenschist to low amphibolite facies is recorded by various microtextures of pyrite. Trails of fine grained pyrite inclusions within hornblende porphyroblasts define S1-schistosity. Pyrite boudins aligned parallel to S1 mark the brittle–ductile transformation of pyrite during the earliest deformation in the region. Isoclinal to tight folds (F1 and F2) in pyrite layers relate to a ductile deformation stage during progressive regional metamorphism. Peak metamorphic conditions around 550°C, an estimation supported by garnet–biotite thermometry, resulted in annealing of pyrite grains, while porphyroblastic growth of pyrite (up to 900 µm) took place along the retrogressive path. Brittle deformation of pyrite and growth of irregular pyritic mass around such fractured porphyroblasts characterize the waning phase of regional metamorphism. A subsequent phase of stress-free, thermal metamorphism is recorded in the decussate and rosette textures of arsenopyrite prisms replacing irregular pyritic mass. Annealing of such patchy pyrite provides information regarding the temperature conditions during this episode of thermal metamorphism which is consistent with the hornblendehornfels facies metamorphism interpreted from magnetite–ilmenite geothermometry (550°C) and sphalerite geobarometry (3.5 kbar). A mild cataclastic deformation during the penultimate phase produced microfaults in twinned arsenopyrite prisms.


1974 ◽  
Vol 11 (2) ◽  
pp. 304-318 ◽  
Author(s):  
W. J. McMillan ◽  
J. M. Moore Jr.

Frenchman's Cap dome is one of a series of gneiss domes along the eastern border of the high-grade Shuswap metamorphic complex. The granitic gneisses which compose the core of the dome are enclosed in an envelope of metasedimentary rocks.Before Shuswap metamorphism and deformation, the rocks of the sedimentary envelope were intruded by concordant bodies of alkalic rocks and carbonatite. Other carbonatite bodies appear to have formed at or extruded onto the surface. It is not certain whether these are exhalative sedimentary deposits, lava flows, or pyroclastic deposits.Criteria which can be used to distinguish igneous alkalic rocks from those of metasomatic origin were almost entirely destroyed by regional metamorphism. A few relict igneous textures show that at least some of the alkalic gneisses are of igneous origin.


1933 ◽  
Vol 70 (12) ◽  
pp. 529-541 ◽  
Author(s):  
F. J. Turner

The mineralogical changes in green schists and related quartzofelspathic schists of sedimentary origin are discussed, and the following conclusions are reached as to the conditions of formation of oligoclase in these rocks:—(1) Oligoclase normally appears as a product of dynamothermal metamorphism at relatively high grades such as prevail in the zones of almandine and perhaps kyanite. It is accompanied either by deeply-coloured hornblende, hornblende and biotite, or biotite and muscovite, according to the chemical composition of the rocks in which it occurs.(2) Sodic oligoclase containing 10 per cent to 15 per cent of anorthite may occur with pale aluminous hornblende in green schists lying within the more strongly metamorphosed portion of the chlorite zone. The rocks in question are low in potash and have been formed by reconstitution, at a higher grade, of chlorite-epidotealbite-schists containing calcite. This oligoclase-hornblende association is not to be confused with the actinolite-epidote-albite-chlorite assemblage which is formed at any grade within the zone of chlorite, by direct reconstitution of basic igneous rocks without change in bulk composition and in the absence of CO2. A slight modification of Tilley’s subdivision of the green schist facies of Eskola is therefore introduced.(3) A zone of oligoclase representing a grade of metamorphism higher than that attained in the biotite zone, may be recognized for quartzo-felspathic schists of appropriate composition and for many green schists, in areas of progressive regional metamorphism. In the latter case, blue-green hornblende often accompanied by biotite is also present.(4) Oligoclase or more calcic plagioclase and deeply-coloured hornblende form readily during purely thermal metamorphism of only medium grade in the absence of stress. This accounts for the irregular distribution of both these minerals in districts where purely thermal and regional metamorphism have both occurred during the same period of orogeny.


1948 ◽  
Vol 85 (3) ◽  
pp. 149-162 ◽  
Author(s):  
Janet Watson

A large part of Central Sutherland is occupied by an injection complex in which rocks of the Moine Series are associated with much granitic and pegmatitic material. These migmatitic Moinian rocks have reached a higher grade of metamorphism than those which occur outside the injection complex. One feature characteristic of the high-grade migmatites is the presence of sillimanite in many of the pelitic and semi-pelitic rocks. Near the village of Kildonan, ten miles north-west of Helmsdale, sillimanite is not only abundant in the country rock, but occurs also in many pegmatitic and aplitic veins. The field and microscopic evidence shows that this mineral was formed as a result of metasomatic activity at a late stage in the history of the injection complex, when the general metamorphism was already on the wane. The sillimanite seems to have no direct connection with the conditions of regional metamorphism. It was formed under the influence of pegmatitic solutions. In view of the common use of this mineral as an index of the grade of regional metamorphism, it is of interest to describe the evidence on which the above conclusions are based.


1993 ◽  
Vol 130 (3) ◽  
pp. 379-390 ◽  
Author(s):  
R. M. Key ◽  
E. R. Phillips ◽  
B. C. Chacksfield

AbstractThe multiphase Strath Ossian Pluton was intruded into metasedimentary rocks of the Neoproterozoic Grampian and Appin groups (Grampian Highlands, Scotland) during Silurian or early Devonian times. Emplacementfollowed the main ductile tectono-thermal history of the area and took place during post-orogenic regional uplift and cooling. Early emplacement of dioritic magma in the northern part of the pluton resulted in migmatization of its immediate country rocks with the generation of new ductile structures. The main granodiorite was then emplaced with magma migrating towards the southeast where wall-rock stoping took place. Elsewhere the pluton created its own space with little stoping or veining. Thermal metamorphism caused by granodiorite emplacement resulted in the progressive development of the assemblage quartz+ plagioclase + biotite+ cordierite +andalusite ± K-feldspar in the metapelitic country rocks. Six prograde mineral assemblage zones are identified in the aureole. Final emplacement of a marginal porphyritic microgranite was accompanied by the release of alkaline fluids into the thermal aureole. This produced sillimanite (fibrolite) in association with hydrous phases such as chlorite and white mica. The development of andalusite and cordierite-bearing assemblages is estimated to have occurred at temperatures of 650±50 °C at an estimated pressure of 3.2±0.5 kbars. An approximately isobaric temperature change of 300±50 °C across the width of the main aureole is deduced. The migmatization close to the plutons margins took place at temperatures of about 700 °C. An estimated depth of emplacement of about 11 km is obtained for the Strath Ossian Pluton. This implies considerable regional uplift both prior to, andimmediately after its emplacement. Thus it has been estimated that at the peak of regional metamorphism, probably during the Ordovician Period, the country rocks were at a depth of 15 to 18.5 km, whereas the early Devonian dykes of the Etive dyke swarm, which cut the Strath Ossian Pluton, were emplaced at, or near surface.


1973 ◽  
Vol 58 ◽  
pp. 63-74
Author(s):  
F Oberli ◽  
R.H Steiger

During the 1969 geological expedition to Scoresby Sund, a small migmatite area on the south-west peninsula of island no. 1 of the Bjørneøer (71°08'44"N/25°20' 56"W - see fig. 1) was mapped and sampled in detail. More than 2000 kg of rock were collected for petrographic and isotope geochemical investigations to give an insight into the nature of rock-forming processes induced by high-grade regional metamorphism. The restriction to a very limited sampling area (700 m × 200 m) provided rock samples which were subjected to very similar P-T conditions for at least part of their history. This report presents preliminary results obtained by the comparison of U-Pb systematics of accessory minerals from various rock phases.


1930 ◽  
Vol 67 (6) ◽  
pp. 271-275 ◽  
Author(s):  
L. R. Wager ◽  
G. Andrew

In Connemara and South Mayo, three main rock groups have been distinguished. The first group, largely developed in South Mayo (see sketch-map), consists of slates, phyllites, grits, conglomerates and thin limestones, and, although these rocks are much cleaved, sufficient fossils have been found to prove that they vary in age from Arenig to Ludlow. The second group of rocks, occurring principally in northern Connemara, consists essentially of quartzites, limestones and schists, and in this group fossils have not been found. In the pelitic schists of this group, biotite, garnet, staurolite and fibrous sillimanite are of widespread occurrence, proving that the group as a whole is in a state of medium to high grade regional metamorphism. We propose that the term Connemara Schists, which has previously only been used vaguely, should be restricted to this group. The third group, occurring in Southern Connemara, is a gneissic series which was tentatively correlated with the Lewisian Gneiss by early workers, and which is indeed remarkably similar to it in general appearance. Later work by Callaway (1887) and McHenry (1903) has, however, shown that these gneisses are not overlain unconformably by the Connemara schists, but are orthogneisses intrusive into them. Their age, therefore, relative to the Connemara Schists, is not in doubt.


Sign in / Sign up

Export Citation Format

Share Document