Kainotropite, Cu4Fe3+O2(V2O7)(VO4), a new mineral with a complex vanadate anion from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia

2020 ◽  
Vol 58 (2) ◽  
pp. 155-165
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Vasiliy O. Yapaskurt ◽  
Yury S. Polekhovsky ◽  
Sergey N. Britvin ◽  
...  

ABSTRACT The new mineral kainotropite Cu4Fe3+O2(V2O7)(VO4) was found in sublimates of fumaroles related to the Tolbachik volcano, Kamchatka, Russia. The holotype specimen originates from the Yadovitaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption; associated minerals are hematite, langbeinite, calciolangbeinite, tenorite, piypite, lyonsite, rutile, pseudobrookite, sanidine, and lammerite. In paleo-fumarolic deposits of Mountain 1004 kainotropite is associated with diopside and hematite. It forms prismatic crystals up to 0.2 × 0.2 × 0.5 mm3, isolated or combined in clusters up to 0.7 mm across. Kainotropite is iron-black to reddish-black, with semi-metallic luster. Dcalc is 4.10 g/cm3. In reflected light, kainotropite is grey, weakly anisotropic. The reflectance values [Rmax–Rmin,% (λ, nm)] are: 18.3–17.3 (470), 17.3–16.3 (546), 16.9–15.7 (589), 16.3–15.1 (650). The chemical composition of the holotype sample (wt.%, electron microprobe) is: CuO 46.69, Al2O3 1.40, Fe2O3 10.04, TiO2 0.32, V2O5 37.58, As2O5 2.55, MoO3 0.76, total 99.34. The empirical formula, based on 13 O apfu, is: Cu3.96Fe3+0.85Al0.19Ti0.03(V2.78As0.15Mo0.04)Σ2.97O13. Kainotropite is orthorhombic, Pnma, a = 14.139(2), b = 6.7102(7), c = 11.4177(15) Å, V = 1083.3(2) Å3, and Z = 4. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 8.89(100)(101), 5.728(33)(002), 3.698(35)(212), 3.357(52)(020,203), 3.034(77)(220), 2.968(60)(303), and 2.655(27)(321,204). The crystal structure was solved from single-crystal XRD data, R = 0.085. Kainotropite represents a novel structure type. Cu2+ polyhedra (distorted tetragonal pyramids and strongly distorted octahedra) and Fe3+ octahedra are connected via common edges to form zigzag ribbons. Adjacent ribbons are connected by both V2O7 and VO4 groups (isolated from each other) to form a heteropolyhedral pseudo-framework. The name kainotropite is derived from the Greek word καινóτρoπoς, unusual, in allusion to its uncommon (for natural vanadates) anionic composition: it is the first mineral containing both pyrovanadate (V2O7)4– and orthovanadate (VO4)3– anions.

2020 ◽  
Vol 58 (5) ◽  
pp. 625-636
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Atali A. Agakhanov ◽  
Nikita V. Chukanov ◽  
Dmitry I. Belakovskiy ◽  
...  

ABSTRACT The new mineral eleomelanite, (K2Pb)Cu4O2(SO4)4, was found in the Arsenatnaya fumarole on the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik Volcano, Kamchatka, Russia. It is associated with euchlorine, fedotovite, wulffite, chalcocyanite, dolerophanite, dravertite, hermannjahnite, alumoklyuchevskite, klyuchevskite, piypite, cryptochalcite, cesiodymite, anglesite, langbeinite, calciolangbeinite, metathénardite, belomarinaite, aphthitalite, krasheninnikovite, steklite, anhydrite, hematite, tenorite, sanidine, sylvite, halite, lammerite, urusovite, and gold. Eleomelanite occurs as interrupted crusts up to 6 mm across and up to 0.3 mm thick consisting of equant, prismatic, or tabular crystals or grains up to 0.3 mm. It is translucent and black. The luster is oleaginous on crystal faces and vitreous on a cleavage surface. Dcalc is 3.790 g/cm3. Eleomelanite is optically biaxial (–), α 1.646(3), β 1.715(6), γ 1.734(6), 2Vmeas. = 60(15)°. The chemical composition (wt.%, electron-microprobe) is K2O 9.62, Rb2O 0.49, Cs2O 0.24, CaO 1.23, CuO 35.28, PbO 19.25, SO3 34.78, total 100.89. The empirical formula calculated based on 18 O apfu is (K1.88Pb0.79Ca0.20Rb0.05Cs0.02)Σ2.94Cu4.07S3.99O18. Eleomelanite is monoclinic, P21/n, a 9.3986(3), b 4.8911(1), c 18.2293(5) Å, β 104.409(3)°, V 811.63(4) Å3, and Z = 2. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 7.38(44)(101), 3.699(78)(112), , 3.173(40)(211), 2.915(35)(114), 2.838(35)(204), , and . The crystal structure was solved using single-crystal XRD data, R1 = 4.78%. It is based on heteropolyhedral Cu–S–O chains composed of Cu-centered polyhedra with [4+1+1] Cu2+ coordination and SO4 tetrahedra. Adjacent Cu–S–O chains are connected via chains of (K,Pb)O8 and KO10 polyhedra. Eleomelanite belongs to a novel structure type but has common structural features with klyuchevskite, alumoklyuchevskite, wulffite, parawulffite, and piypite. The name is derived from the Greek ελαιν (eleon), oil, and μλας (melas), black, due to its black color and oleaginous luster on crystal faces that are uncommon for sulfate minerals.


2016 ◽  
Vol 80 (5) ◽  
pp. 855-867 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Vasiliy O. Yapaskurt ◽  
Yury S. Polekhovsky ◽  
Marina F. Vigasina ◽  
...  

AbstractThe new mineral melanarsite, K3Cu7Fe3+O4(AsO4)4, was found in the sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. It is associated with dmisokolovite, shchurovskyite, bradaczekite, hematite, tenorite, aphthitalite, johillerite, arsmirandite, As-bearing orthoclase, hatertite, pharmazincite, etc. Melanarsite occurs as tabular to prismatic crystals up to 0.4 mm, separate or combined in clusters up to 1 mm across or in interrupted crusts up to 0.02 cm × 1 cm × 1 cm covering basalt scoria. The mineral is opaque, black, with a vitreous lustre. Melanarsite is brittle. Mohs' hardness is ∼4 and the mean VHN = 203 kg mm–2. Cleavage was not observed and the fracture is uneven. Dcalc is 4.39 g cm–3. In reflected light, melanarsite is dark grey. Bireflectance is weak, anisotropism is very weak. Reflectance values [R1–R2, % (λ, nm)] are 10.5–9.4 (470), 10.0–8.9 (546), 9.7–8.7 (589), 9.5–8.6 (650). The Raman spectrum is reported. Chemical composition (wt.%, electron microprobe) is K2O 10.70, CaO 0.03, CuO 45.11, ZnO 0.24, Al2O3 0.32, Fe2O3 6.11, TiO2 0.12, P2O5 0.07, As2O5 36.86, total 99.56. The empirical formula, based on 20 O apfu, is (K2.81Ca0.01)∑2.82(Cu7.02Fe3+0.95Al0.08Zn0.04Ti0.02)∑8.11(As3.97P0.01)∑3.98O20. Melanarsite is monoclinic, C2/c, a = 11.4763(9), b = 16.620(2), c = 10.1322(8) Å, β = 105.078(9)°, V = 1866.0(3) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are 9.22(100)(110), 7.59(35)(1₃11), 6.084(17) (111), 4.595(26)(1₃31, 220, 2₃21), 3.124(22)(3₃31, 1₃51), 2.763(20)(400, 1₃52), 2.570(23)(043) and 2.473(16) (260, 2₃61, 350). Melanarsite has a novel structure type. Its crystal structure, solved from single-crystal X-ray diffraction data (R = 0.091), is based upon a heteropolyhedral pseudo-framework built by distorted Cu(1–3)O6 and (Fe,Cu)O6 octahedra and As(1–3)O4 tetrahedra. Two crystallographically independent K+ cations are located in the tunnels and voids of the pseudo-framework centring eight- and seven-fold polyhedra. The name reflects the mineral being an arsenate and its black colour (from the Greek μέλαν, black).


2018 ◽  
Vol 83 (4) ◽  
pp. 485-495 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Atali A. Agakhanov ◽  
Dmitry A. Ksenofontov ◽  
Leonid A. Pautov ◽  
...  

AbstractTwo new isostructural minerals edtollite K2NaCu5Fe3+O2(AsO4)4 and alumoedtollite K2NaCu5AlO2(AsO4)4 have been found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. They are associated with sylvite, tenorite, dmisokolovite, shchurovskyite, johillerite, bradaczekite, and orthoclase. Edtollite forms prismatic crystals up to 0.02 mm × 0.1 mm; alumoedtollite forms long-prismatic crystals up to 0.01 mm × 0.1 mm. Both minerals have a semi-metallic lustre. Edtollite is brown–black to black and alumoedtollite is bronze coloured. Dcalc. = 4.26 (edtollite) and 4.28 (alumoedtollite) g cm–3. In reflected light, both minerals are grey, with distinct anisotropy. Reflectance values [edtollite/alumoedtollite: R1–R2, % (λ, nm)] are: 8.3–8.2/8.7–7.7 (470); 7.7–7.4/8.3–7.4 (546); 7.1–6.9/8.3–7.4 (589); and 6.3–6.3/7.6–7.2 (650). Chemical data are: (edtollite/alumoedtollite, wt.%, electron-microprobe): Na2O 3.13/2.58, K2O 8.12/9.09, Rb2O 0.00/0.11, CaO 0.00/0.52, CuO 36.55/38.35, ZnO 0.46/0.00, Al2O3 0.00/3.48, Fe2O3 7.34/1.79, TiO2 0.27/0.00, As2O5 43.57/43.66, total 99.44/99.58. The empirical formulae, based on 18 O apfu, for edtollite is: K1.83Na1.07Cu4.88Zn0.06Fe3+0.98Ti0.04As4.03O18; and for alumoedtollite is: K2.02Rb0.01Na0.87Ca0.10Cu5.06Al0.72Fe3+0.24As3.99O18. Both minerals are triclinic, P$\bar{1}$; unit-cell parameters (edtollite/alumoedtollite) are: a = 5.1168(6)/5.0904(11), b = 9.1241(12)/9.0778(14), c = 9.6979(14)/9.6658(2) Å, α = 110.117(13)/110.334(17), β = 102.454(12)/102.461(19), γ = 92.852(11)/92.788(15)°, V = 411.32(9)/404.88(14) Å3 and Z = 1/1. The strongest reflections in the powder X-ray diffraction pattern [d,Å(I)(hkl)] are for edtollite: 8.79(92)(001), 7.63(41)(0$\bar{1}$1), 5.22(44)(011), 3.427(100)(012), 3.148(64)(0$\bar{1}$3), 2.851(65)($\bar{1}$03) and 2.551(40)($\bar{2}$01); and for alumoedtollite: 8.78(81)(001), 7.62(67)(0$\bar{1}$1), 3.418(100)(012), 3.147(52)(0$\bar{1}$3), 2.558(58)($\bar{1}$22), 2.544(65)($\bar{2}$01) and 2.528(52)($\bar{1}\bar{3}$2). The crystal structures [single-crystal X-ray diffraction, R = 0.0773 (edtollite) and 0.0826 (alumoedtollite); 1504 and 1046 unique reflections, respectively] represent a novel structure type. It is based upon a heteropolyhedral pseudo-framework with the column formed by Cu2+-centred octahedra and square pyramids, octahedra MO6 (M = Fe3+, Al3+ or Cu2+) and AsO4 tetrahedra as the main building unit. K+ and Na+ are located in wide and narrow channels, respectively. Edtollite is named after the Russian geologist and Arctic explorer Eduard Vasilievich Toll (1858–1902), alumoedtollite is its analogue with Al prevailing among trivalent cations.


2012 ◽  
Vol 76 (3) ◽  
pp. 673-682 ◽  
Author(s):  
I. V. Pekov ◽  
M. E. Zelenski ◽  
N. V. Zubkova ◽  
V. O. Yapaskurt ◽  
N. V. Chukanov ◽  
...  

AbstractThe new mineral calciolangbeinite, ideally K2Ca2(SO4)3, is the Ca-dominant analogue of langbeinite. It occurs in sublimates at the Yadovitaya fumarole on the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure eruption, Tolbachik volcano, Kamchatka, Russia. The mineral is associated with langbeinite, piypite, hematite, rutile, pseudobrookite, orthoclase, lyonsite, lammerite, cyanochroite and chlorothionite. Calciolangbeinite occurs as tetrahedral to pseudooctahedral crystals, which are bounded by {111} and {111̄}, and as anhedral grains up to 1 mm in size, aggregated into clusters up to 2 mm across, and forming crusts covering areas of up to 1.5x1.5 cm on the surface of volcanic scoria. Late-stage calciolangbeinite occurs in complex epitaxial intergrowths with langbeinite. Calciolangbeinite is transparent and colourless with white streak and vitreous lustre. Its Mohs' hardness is 3–3½. It is brittle, has a conchoidal fracture and no obvious cleavage. The measured and calculated densities are Dmeas = 2.68(2) and Dcalc = 2.74 g cm–3, respectively. Calciolangbeinite is optically isotropic with n = 1.527(2). The chemical composition of the holotype specimen is Na2O 0.38, K2O 21.85, MgO 6.52, CaO 16.00, MnO 0.27, FeO 0.08, Al2O3 0.09, SO3 55.14, total 100.63 wt.%. The empirical formula, calculated on the basis of twelve oxygen atoms per formula unit, is K2.01(Ca1.24Mg0.70Na0.05Mn0.02Fe0.01Al0.01)S 2.03S3.00O12. Calciolangbeinite is cubic, space group P213, a = 10.1887(4) Å, V = 1057.68(4) Å3 and Z = 4. The strongest reflections in the X-ray powder pattern [listed as (d, Å (I)(hkl)] are 5.84(8)(111); 4.54(9)(120); 4.15(27)(211); 3.218 (100) (310, 130); 2.838 (8) (230, 320), 2.736 (37) (231, 321), 2.006 (11) (431, 341) , 1.658(8)(611,532,352). The crystal structure was refined from single-crystal X-ray diffraction data to R = 0.0447. The structure is based on the langbeinite-type three-dimensional complex framework, which is made up of (Ca,Mg)O6 octahedra (Ca and Mg are disordered) and SO4 tetrahedra. Potassium atoms occupy two sites in voids in the framework; K(1) cations are located in ninefold polyhedra whereas K(2) cations are sited in significantly distorted octahedra. Calciolangbeinite and langbeinite are isostructural and form a solid-solution series.


2015 ◽  
Vol 79 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Vasiliy O. Yapaskurt ◽  
Dmitry I. Belakovskiy ◽  
Marina F. Vigasina ◽  
...  

AbstractThe new mineral popovite, Cu5O2(AsO4)2, was found in the sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with ericlaxmanite, kozyrevskite, urusovite, lammerite, lammerite-β, johillerite, bradaczekite, tenorite, hematite, aphthitalite, anhydrite, langbeinite, calciolangbeinite, As-bearing orthoclase, etc. Popovite occurs as prismatic or tabular crystals and as grains up to 0.2 mm in size forming clusters up to 1.5 mm in size and as crusts on basalt scoria or on aphthitalite incrustations. Popovite is transparent with a vitreous to greasy lustre. Its colour is olive green to dark olive-green, but fine-grained varieties are light yellow-green. The mineral is brittle, with Mohs' hardness ∼3½. Cleavage was not observed and the fracture is uneven. Dcalc is 5.30 g cm–3. Popovite is optically biaxial (+), α = 1.84(1), β ≈ 1.86, γ = 1.96(1), 2Vmeas = 50(20)°. The Raman spectrum is given. Chemical data (wt.%, electron-microprobe) are CuO 63.28, ZnO 0.56, V2O50.12, As2O5 35.80, SO3 0.27, total 100.03. The empirical formula, based on 10 O a.p.f.u., is (Cu4.99Zn0.04)Σ5.03(As1.95S0.02V0.01)Σ1.98O10. Popovite is triclinic, P1̄, a = 5.1450(3), b = 6.2557(3), c = 6.2766(4) Å, α = 100.064(5), β = 96.351(5), γ = 95.100(5)°, V = 196.47(1) Å3 and Z = 1. The strongest reflections in the powder X-ray diffraction pattern [d, Å (I)(hkl)] are 3.715(36)(110, 101), 3.465(43)(11̄1), 2.968(90)(01̄2), 2.927(100)(111), 2.782(31)(1̄02), 2.768(67)(1̄20), 2.513(55)(1̄2̄1) and 2.462(67)(2̄01). Popovite has a novel structure type. Its crystal structure, solved from single-crystal X-ray diffraction data (R = 0.0459), is based on (010) layers forming an interrupted framework. The layer consists of Cu(1)O6 octahedra with very strong Jahn-Teller distortion and Cu(2)O5 and Cu(3)O5 polyhedra. The linkage between the layers is reinforced by isolated AsO4 tetrahedra. Popovite is named in honour of the Russian mineralogists Vladimir Anatol'evich Popov (b. 1941) and Valentina Ivanovna Popova (b. 1941), a husband and wife research team working in the Institute of Mineralogy of the Urals Branch of the Russian Academy of Sciences, Miass, Russia.


2019 ◽  
Vol 83 (6) ◽  
pp. 879-886 ◽  
Author(s):  
Igor V. Pekov ◽  
Inna S. Lykova ◽  
Atali A. Agakhanov ◽  
Dmitry I. Belakovskiy ◽  
Marina F. Vigasina ◽  
...  

AbstractThe new mineral zubkovaite, Ca3Cu3(AsO4)4, was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with anhydrite, svabite, hematite, johillerite, tilasite, fluorophlogopite, sanidine and aphthitalite. Zubkovaite occurs as coarse prismatic crystals up to 0.01 mm × 0.01 mm × 0.2 mm combined in radiating aggregates or crusts. The mineral is transparent, bright sky-blue, turquoise-coloured or light bluish-green, with vitreous lustre. It is brittle, with imperfect cleavage. The Mohs’ hardness is ca 3. Dcalc is 4.161 g cm–3. Zubkovaite is optically biaxial (–), α = 1.747(5), β = 1.774(5), γ = 1.792(5) and 2Vmeas = 75(10)°. Chemical composition (wt.%, electron microprobe) is: CaO 19.22, CuO 27.37, As2O5 52.54, SO3 0.67, total 99.80. The empirical formula based on 16 O apfu is Ca2.96Cu2.97(As3.945S0.07)Σ4.015O16. Zubkovaite is monoclinic, C2, a = 16.836(3), b = 5.0405(8), c = 9.1173(17) Å, β = 117.388(13)°, V = 687.0(2) Å3 and Z = 2. The strongest reflections of the powder XRD pattern [d,Å (I) (hkl)] are: 7.44 (100) ($\bar 2$01), 3.727 (79) (400, $\bar 2$02, $\bar 3$11), 3.334 (92) ($\bar 1$12), 2.914 (73) (311), 2.765 (50) ($\bar 6$01, $\bar 6$02), 2.591 (96) ($\bar 3$13) and 2.521 (53) (020). The crystal structure is unique for minerals. It was solved from single-crystal X-ray diffraction data to R = 7.19%. The structure contains trimers of Cu2+-centred polyhedra (consisting of one distorted square CuO4 in the core and two distorted square pyramids CuO5) and two crystallographically independent As5+O4 tetrahedra playing different roles: As(2)O4 tetrahedra link neighbouring trimers into ribbons whereas As(1)O4 tetrahedra link adjacent ribbons into heteropolyhedral layers; Ca cations are located in the interlayer space. The mineral is named in honour of the Russian crystallographer and crystal chemist Natalia Vital'evna Zubkova (born 1976).


2013 ◽  
Vol 77 (1) ◽  
pp. 107-116 ◽  
Author(s):  
I. V. Pekov ◽  
N. V. Zubkova ◽  
M. E. Zelenski ◽  
V. O. Yapaskurt ◽  
Yu. S. Polekhovsky ◽  
...  

AbstractA new mineral, yaroshevskite, ideally Cu9O2(VO4)4Cl2, occurs in sublimates collected from the Yadovitaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with euchlorine, fedotovite, hematite, tenorite, lyonsite, melanothallite, atlasovite, kamchatkite and secondary avdoninite, belloite and chalcanthite. Yaroshevskite forms isolated prismatic crystals, up to 0.1 × 0.15 × 0.3 mm in size, on the surface of euchlorine crusts. The mineral is opaque and black, with a reddish black streak and lustre between metallic and adamantine. Yaroshevskite is brittle, no cleavage was observed and the fracture is uneven. The Mohs hardness is ~3½ (corresponding to a mean VHN micro-indentation hardness of 172 kg mm -2) and the calculated density is 4.26 g cm-3. In reflected light, yaroshevskite is grey with a weak bluish hue. Pleochroism, internal reflections and bireflectance were not observed. Anisotropy is very weak. The composition (wt.%) determined by electron microprobe is: CuO 61.82, ZnO 0.53, Fe2O3 0.04, V2O531.07, As2O50.32, MoO3 1.56, Cl 6.23, O=Cl2 1.41; total 100.16. The empirical formula, calculated on the basis of 20 (O + Cl) anions is (Cu8.80 Zn0.07 Fe0.01)Σ 8.88(V3.87Mo0.12As0.03)σ 4.02O18.01Cl1.99. Yaroshevskite is triclinic, space group P, a = 6.4344(11), b = 8.3232(13), c = 9.1726(16) Å , α = 105.338(14), β = 96.113(14), γ = 107.642(1)°, V = 442.05(13) Å3 and Z = 1. The nine strongest reflections in the X-ray powder pattern [dobs in Å (I)(hkl)] are as follows: 8.65(100)(001); 6.84(83)(01); 6.01(75)(100); 5.52(60)(01); 4.965(55)(011); 4.198(67)(1); 4.055(65)(110); 3.120(55)(021); 2.896(60)(21,003,20). The crystal structure was solved by direct methods from single-crystal X-ray diffraction data and refined to R = 0.0737. The yaroshevskite structure is unique. It is based on corrugated layers made up of chains of edge-sharing flat squares with central Cu2+ cations [Cu(1), Cu(4) and Cu(5)]; neighbouring chains are connected via groups consisting of three Cu2+ -centred squares [two Cu(3) and Cu(6)]. Neighbouring layers are connected via pairs of Cu(2)O4Cl five-coordinate polyhedra and isolated VO4 tetrahedra. The structure of yaroshevskite can also be considered in terms of oxygen-centred tetrahedra: O(7)Cu4 tetrahedra are connected via common Cu(4) and Cu(5) vertices to form pyroxene-like chains [O2Cu6]∞. In this context, the structural formula can be written Cu3[O2Cu6][VO4]4Cl2. The mineral name honours the Russian geochemist Alexei A. Yaroshevsky (b. 1934) of Moscow State University.


2018 ◽  
Vol 83 (03) ◽  
pp. 453-458 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Atali A. Agakhanov ◽  
Dmitry I. Belakovskiy ◽  
Marina F. Vigasina ◽  
...  

AbstractThe new durangite-group mineral arsenatrotitanite, ideally NaTiO(AsO4), was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with orthoclase, tenorite, hematite, johillerite, bradaczekite, badalovite, calciojohillerite, arsmirandite, tilasite, svabite, cassiterite, pseudobrookite, rutile, sylvite, halite, aphthitalite, langbeinite and anhydrite. Arsenatrotitanite occurs as prismatic, tabular, lamellar or acicular crystals up to 0.3 mm × 0.8 mm × 2 mm. They are separated or combined in open-work aggregates up to 2 mm across or interrupted crusts up to 2 mm × 5 mm in area and up to 0.3 mm thick. Arsenatrotitanite is transparent, brownish red to pale pinkish-reddish or almost colourless, with vitreous lustre. It is brittle and the Mohs’ hardness is ~5½. Cleavage is perfect on {110} and the fracture is stepped. Dcalc is 3.950 g cm–3. Arsenatrotitanite is optically biaxial (+), α = 1.825(5), β = 1.847(6), γ = 1.896(6) (589 nm) and 2Vmeas. = 70(5)°. Chemical composition (wt.%, electron-microprobe) is: Na2O 12.26, CaO 3.10, Al2O3 4.39, Fe2O3 9.57, TiO2 17.11, SnO2 1.03, As2O5 50.17, F 3.29, O = F –2.39, total 99.53. The empirical formula based on 5 (O + F) apfu is (Na0.91Ca0.13)Σ1.04(Ti0.49Fe3+0.27Al0.20Sn0.02)Σ0.98(As1.00O4.00)(O0.60F0.40). Arsenatrotitanite is monoclinic, C2/c, a = 6.6979(3), b = 8.7630(3), c = 7.1976(3) Å, β = 114.805(5)°, V = 383.48(3) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction (XRD) pattern [d,Å(I)(hkl)] are: 4.845(89)($\bar{1} {11}}$), 3.631(36)(021), 3.431(48)(111), 3.300(100)($\bar{1} {12}}$), 3.036(100)(200), 2.627(91)(130) and 2.615(57)(022). The crystal structure was solved from single-crystal XRD data with R = 1.76%. Arsenatrotitanite belongs to the titanite/durangite structure type. It is named as an arsenate of sodium (natrium in Latin) and titanium isostructural with titanite.


2005 ◽  
Vol 17 (5) ◽  
pp. 715-721 ◽  
Author(s):  
Alexey Konev ◽  
Marco Pasero ◽  
Dmitry Pushcharovsky ◽  
Stefano Merlino ◽  
Anvar Kashaev ◽  
...  

2014 ◽  
Vol 78 (4) ◽  
pp. 905-917 ◽  
Author(s):  
I. V. Pekov ◽  
N. V. Zubkova ◽  
V. O. Yapaskurt ◽  
D. I. Belakovskiy ◽  
I. S. Lykova ◽  
...  

AbstractA new mineral, yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6, occurs in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with hatertite, bradaczekite, johillerite, hematite, tenorite, tilasite and aphthitalite. Yurmarinite occurs as well-shaped, equant crystals up to 0.3 mm in size, their clusters up to 0.5 mm and thin, interrupted crystal crusts up to 3 mm × 3 mm on volcanic scoria. Crystal forms are {101}, {011}, {100}, {110} and {001}. Yurmarinite is transparent, pale green or pale yellowish green to colourless. The lustre is vitreous and the mineral is brittle. The Mohs hardness is ∼4½. One direction of imperfect cleavage was observed, the fracture is uneven. D(calc.) is 4.00 g cm−3. Yurmarinite is optically uniaxial (−), ω = 1.748(5), ε = 1.720(3). The Raman spectrum is given. The chemical composition (wt.%, electron microprobe data) is Na2O 16.85, K2O 0.97, CaO 1.28, MgO 2.33, MnO 0.05, CuO 3.17, ZnO 0.97, Al2O3 0.99, Fe2O3 16.44, TiO2 0.06, P2O5 0.12, V2O5 0.08, As2O5 56.68, total 99.89. The empirical formula, calculated on the basis of 24 O atoms per formula unit, is (Na6.55Ca0.28K0.22)S7.05(Fe2.483+Mg0.70Cu0.48Al0.23Zn0.14Ti0.01Mn0.01)S4.05(As5.94P0.02V0.01)S5.97O24. Yurmarinite is rhombohedral, Rc, a = 13.7444(2), c = 18.3077(3) Å, V = 2995.13(8) Å3, Z = 6. The strongest reflections in the X-ray powder pattern [d, Å (I)(hkl)] are: 7.28(45)(012); 4.375(33)(211); 3.440(35)(220); 3.217(36)(131,214); 2.999(30)(223); 2.841(100)(125); 2.598(43)(410). The crystal structure was solved from single-crystal X-ray diffraction data to R = 0.0230. The structure is based on a 3D heteropolyhedral framework formed by M4O18 clusters (M = Fe3+ > Mg,Cu) linked with AsO4 tetrahedra. Sodium atoms occupy two octahedrally coordinated sites in the voids of the framework. In terms of structure, yurmarinite is unique among minerals but isotypic with several synthetic compounds with the general formula (Na7–x☐x)(M3+x3+M1–x2+)(T5+O4)2 in which T = As or P, M3+ = Fe or Al, M2+ = Fe and 0 ≤ x ≤ 1. The mineral is named in honour of the Russian mineralogist, petrologist and specialist in studies of ore deposits, Professor Yuriy B. Marin (b. 1939). The paper also contains a description of the Arsenathaya fumarole and an overview of arsenate minerals formed in volcanic exhalations.


Sign in / Sign up

Export Citation Format

Share Document