Isolation and Identification of Multi-Drug Resistant “Pseudomonas Aeruginosa” from Burn Wound Infection Iraq

Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 463-477
Author(s):  
Ming Ming Wen ◽  
Ibrahim A. Abdelwahab ◽  
Rania G. Aly ◽  
Sally A. El-Zahaby

2021 ◽  
Vol 30 (1) ◽  
pp. 19-28
Author(s):  
Yasser M. Ismail ◽  
Sahar M. Fayed ◽  
Fatma M. Elesawy ◽  
Nora Z Abd El-Halim ◽  
Ola S. El-Shimi

Background: The biggest concern for a burn team is a nosocomial infection in burn patients, which is a significant health issue. Pseudomonas aeruginosa is an extremely troublesome drug-resistant bacterium in the world today. We are now faced with rising P. aeruginosa pan-drug-resistant clones in hospital settings. Objectives: To evaluate the distribution of different virulence factors generated by P. aeruginosa isolated from burn wound infections, together with its antimicrobial susceptibility. Methodology: The isolates reported as P. aeruginosa were further tested for the presence of various phenotypic and genotypic virulence factors including (Biofilm formation, lipase, protease, gelatinase, DNase, bile esculin hydrolysis & hemolysin). Also, genes encoding (nan 1 and Exo A) were investigated by PCR using specific primers. All the isolates were tested for their antimicrobial susceptibility patterns. Results: The study reported that toxins and enzymes were expressed by the tested strains in varying proportions; (92.0%) were producing β-hemolysin, lipase (86%), and protease (86%). The formation of biofilm was observed in 84%. Exo A (70%) was the main virulence gene found in the tested strains. Nan 1 gene was identified in 30% of the samples. 82% of MDRPA isolates were found. There is indeed a relationship between biofilm production and drug resistance, as well as the presence of virulence genes (nan 1 and Exo A) were associated with certain patients and burn wounds characteristics as burn size, burn wound depth, length of hospital stays, and socioeconomic status. Conclusions: Correlation of Pseudomonas aeruginosa virulence profiles with burn wounds and patient-related data can be useful in establishing of an appropriate preventive protocol for hospitalized patients with P. aeruginosa burn serious infections. The targeting of these bacterial virulence arsenals is also a promising approach to developing alternative drugs, which act by attenuating the aggressiveness of the pathogen and reducing its potential to cause vigorous infection.


2013 ◽  
Vol 98 (4) ◽  
pp. 416-423 ◽  
Author(s):  
Hakan Yabanoglu ◽  
Ozgur Basaran ◽  
Cem Aydogan ◽  
Ozlem Kurt Azap ◽  
Feza Karakayali ◽  
...  

Abstract The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp.


2013 ◽  
Vol 51 (4) ◽  
pp. 151
Author(s):  
Syed Hassan Abbas Naqvi ◽  
Syed Hassan Shiraz Naqvi ◽  
E Coetzee

Sign in / Sign up

Export Citation Format

Share Document