scholarly journals The Proteomic Expression of Nuclear Apoptosis-Inducing Factor1 (NAIF1) in Colorectal Tissues

2021 ◽  
Keyword(s):  
2001 ◽  
Vol 114 (20) ◽  
pp. 3643-3653 ◽  
Author(s):  
Madeleine Kihlmark ◽  
Gabriela Imreh ◽  
Einar Hallberg

We have produced new antibodies specific for the integral pore membrane protein POM121. Using these antibodies we show that during apoptosis POM121 becomes proteolytically degraded in a caspase-dependent manner. The POM121 antibodies and antibodies specific for other proteins of the nuclear envelope were used in a comparative study of nuclear apoptosis in staurosporine-treated buffalo rat liver cells. Nuclei from these cells were classified in three different stages of apoptotic progression: stage I, moderately condensed chromatin surrounded by a smooth nuclear periphery; stage II, compact patches of condensed chromatin collapsing against a smooth nuclear periphery; stage III, round compact chromatin bodies surrounded by grape-shaped nuclear periphery. We have performed double labeling immunofluorescence microscopy of individual apoptotic cells and quantitative immunoblotting analysis of total proteins from apoptotic cell cultures. The results showed that degradation of nuclear envelope marker proteins occurred in a specific order. POM121 degradation occurred surprisingly early and was initiated before nucleosomal DNA degradation could be detected using TUNEL assay and completed before clustering of the nuclear pores. POM121 was eliminated significantly more rapid compared with NUP153 (a peripheral protein located in the nucleoplasmic basket of the nuclear pore complex) and lamin B (a component of the nuclear lamina). Disappearance of NUP153 and lamin B was coincident with onset of DNA fragmentation and clustering of nuclear pores. By contrast, the peripheral NPC protein p62 was degraded much later. The results suggest that degradation of POM121 may be an important early step in propagation of nuclear apoptosis.


2008 ◽  
Vol 21 (04) ◽  
pp. 337-342 ◽  
Author(s):  
M. A. Hossain ◽  
J. Park ◽  
S. H. Choi ◽  
G. Kim

SummaryDexamethasone (Dexa) has been commonly used in humans and domestic animals, particularly in the treatment of tendon injuries and cartilage degeneration. However, it is often associated with tendon rupture and impaired tendon and cartilage healing. In the present study, we investigated Dexa’s in vitro effects on the growth of cell proliferation and the induction of apoptosis in canine Achilles tendon cells and chondrocytes. Cell proliferation after treatment with Dexa for two to six days was quantified by a 2,3-bis{2-methoxy- 4-nitro-5-sulfophenyl}-2H-tetrazolium-5-carboxyanilide inner salt assay (XTT). The results showed that Dexa could inhibit the proliferation of tendon cells and chondrocytes at increasing concentrations (0.1–50 μg/ml) compared with untreated cells. Cell apoptosis was induced by Dexa, as evidenced by the typical nuclear apoptosis using Hoechst 33258 staining. Dexa increased the apoptosis of canine tendon cells and chondrocytes in a time-dependent manner. In canine tendon cells and chondrocytes that were treated with 25 and 50 μg/ml concentration of Dexa, the number of condensed apoptotic nuclei was significantly increased. In addition, culturing with Dexa and the glucocorticoid receptor blocker, mifepristone, significantly arrested apoptosis of tendon cells and chondrocytes. Based on our in vitro data, we hypothesized that in vivo treatment with glucocorticoids may diminish the proliferation of tendon and cartilage cells by increasing apoptosis and suppressing the proliferation. Our findings suggest that Dexa could be used with caution in dogs with articular or tendon problems.


2001 ◽  
Vol 1 ◽  
pp. 61-61
Author(s):  
Madeleine Kihlmark ◽  
Gabriela Imreh ◽  
Einar Hallberg
Keyword(s):  

2016 ◽  
Vol 37 (6) ◽  
pp. 1982-1993 ◽  
Author(s):  
Jian Zhang ◽  
Xiaoling Li ◽  
Herman Kwansa ◽  
Yun Tai Kim ◽  
Liye Yi ◽  
...  

Tissue acidosis is a key component of cerebral ischemic injury, but its influence on cell death signaling pathways is not well defined. One such pathway is parthanatos, in which oxidative damage to DNA results in activation of poly(ADP-ribose) polymerase and generation of poly(ADP-ribose) polymers that trigger release of mitochondrial apoptosis-inducing factor. In primary neuronal cultures, we first investigated whether acidosis per sé is capable of augmenting parthanatos signaling initiated pharmacologically with the DNA alkylating agent, N-methyl- N′-nitro- N-nitrosoguanidine. Exposure of neurons to medium at pH 6.2 for 4 h after N-methyl- N′-nitro- N-nitrosoguanidine washout increased intracellular calcium and augmented the N-methyl- N′-nitro- N-nitrosoguanidine-evoked increase in poly(ADP-ribose) polymers, nuclear apoptosis-inducing factor , and cell death. The augmented nuclear apoptosis-inducing factor and cell death were blocked by the acid-sensitive ion channel-1a inhibitor, psalmotoxin. In vivo, acute hyperglycemia during transient focal cerebral ischemia augmented tissue acidosis, poly(ADP-ribose) polymers formation, and nuclear apoptosis-inducing factor , which was attenuated by a poly(ADP-ribose) polymerase inhibitor. Infarct volume from hyperglycemic ischemia was decreased in poly(ADP-ribose) polymerase 1-null mice. Collectively, these results demonstrate that acidosis can directly amplify neuronal parthanatos in the absence of ischemia through acid-sensitive ion channel-1a . The results further support parthanatos as one of the mechanisms by which ischemia-associated tissue acidosis augments cell death.


1997 ◽  
Vol 236 (2) ◽  
pp. 397-403 ◽  
Author(s):  
Santos A. Susin ◽  
Naoufal Zamzami ◽  
Nathanael Larochette ◽  
Bruno Dallaporta ◽  
Isabel Marzo ◽  
...  

2012 ◽  
Vol 303 (11) ◽  
pp. E1335-E1347 ◽  
Author(s):  
Lamia Slimani ◽  
Didier Micol ◽  
Julien Amat ◽  
Geoffrey Delcros ◽  
Bruno Meunier ◽  
...  

Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle but not in the shortened gastrocnemius muscle. Here, we investigated some mechanisms responsible for this differential response. Adult rats were subjected to unilateral hindlimb casting for 8 days (I8). Casts were removed at I8, and animals were allowed to recover for 10 days (R1 to R10). The worsening of TA atrophy following immobilization occurred immediately after cast removal at R1 and was sustained until R10. This atrophy correlated with a decrease in type IIb myosin heavy chain (MyHC) isoform and an increase in type IIx, IIa, and I isoforms, with muscle connective tissue thickening, and with increased collagen (Col) I mRNA levels. Increased Col XII, Col IV, and Col XVIII mRNA levels during TA immobilization normalized at R6. Sustained enhanced peptidase activities of the proteasome and apoptosome activity contributed to the catabolic response during the studied recovery period. Finally, increased nuclear apoptosis prevailed only in the connective tissue compartment of the TA. Altogether, the worsening of the TA atrophy pending immediate reloading reflects a major remodeling of its fiber type properties and alterations in the structure/composition of the extracellular compartment that may influence its elasticity/stiffness. The data suggest that sustained enhanced ubiquitin-proteasome-dependent proteolysis and apoptosis are important for these adaptations and provide some rationale for explaining the atrophy of reloaded muscles pending immobilization in a lengthened position.


2008 ◽  
Vol 36 (2) ◽  
pp. 51-57 ◽  
Author(s):  
Stephen E. Alway ◽  
Parco M. Siu
Keyword(s):  

1997 ◽  
Vol 231 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Atsushi Takahashi ◽  
Pascal J. Goldschmidt-Clermont ◽  
Emad S. Alnemri ◽  
Teresa Fernandes-Alnemri ◽  
Kumiko Yoshizawa-Kumagaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document