The worsening of tibialis anterior muscle atrophy during recovery post-immobilization correlates with enhanced connective tissue area, proteolysis, and apoptosis

2012 ◽  
Vol 303 (11) ◽  
pp. E1335-E1347 ◽  
Author(s):  
Lamia Slimani ◽  
Didier Micol ◽  
Julien Amat ◽  
Geoffrey Delcros ◽  
Bruno Meunier ◽  
...  

Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle but not in the shortened gastrocnemius muscle. Here, we investigated some mechanisms responsible for this differential response. Adult rats were subjected to unilateral hindlimb casting for 8 days (I8). Casts were removed at I8, and animals were allowed to recover for 10 days (R1 to R10). The worsening of TA atrophy following immobilization occurred immediately after cast removal at R1 and was sustained until R10. This atrophy correlated with a decrease in type IIb myosin heavy chain (MyHC) isoform and an increase in type IIx, IIa, and I isoforms, with muscle connective tissue thickening, and with increased collagen (Col) I mRNA levels. Increased Col XII, Col IV, and Col XVIII mRNA levels during TA immobilization normalized at R6. Sustained enhanced peptidase activities of the proteasome and apoptosome activity contributed to the catabolic response during the studied recovery period. Finally, increased nuclear apoptosis prevailed only in the connective tissue compartment of the TA. Altogether, the worsening of the TA atrophy pending immediate reloading reflects a major remodeling of its fiber type properties and alterations in the structure/composition of the extracellular compartment that may influence its elasticity/stiffness. The data suggest that sustained enhanced ubiquitin-proteasome-dependent proteolysis and apoptosis are important for these adaptations and provide some rationale for explaining the atrophy of reloaded muscles pending immobilization in a lengthened position.

1998 ◽  
Vol 156 (1) ◽  
pp. 83-89 ◽  
Author(s):  
D Dardevet ◽  
C Sornet ◽  
I Savary ◽  
E Debras ◽  
P Patureau-Mirand ◽  
...  

This study was performed to assess the effect of glucocorticoids (dexamethasone) on insulin- and IGF-I-regulated muscle protein metabolism in adult and old rats. Muscle atrophy occurred more rapidly in old rats, and recovery of muscle mass was impaired when compared with adults. Muscle wasting resulted mainly from increased protein breakdown in adult rat but from depressed protein synthesis in the aged animal. Glucocorticoid treatment significantly decreased the stimulatory effect of insulin and IGF-I on muscle protein synthesis in adult rats by 25.9 and 58.1% respectively. In old rats, this effect was even greater, being 49.3 and 100% respectively. With regard to muscle proteolysis, glucocorticoids blunted the anti-proteolytic action of insulin and IGF-I in both age groups. During the recovery period, adult rats reversed the glucocorticoid-induced resistance of muscle protein metabolism within 3 days, at which time old rats still exhibited the decrease in insulin-regulated proteolysis. In conclusion, the higher sensitivity of old rat muscle to glucocorticoids may in part result from the greater modification of the effects of insulin and IGF-I on muscle protein metabolism. These responses to glucocorticoids in old rats may be associated with the emergence of muscle atrophy with advancing age.


2017 ◽  
Vol 77 (1) ◽  
pp. 83-91 ◽  
Author(s):  
A. Pertille ◽  
K. F. Moura ◽  
C. Y. Matsumura ◽  
R. Ferretti ◽  
D. M. Ramos ◽  
...  

Abstract The aim of this study was to analyze muscle regeneration after cryoinjury in the tibialis anterior muscle of young rats that were malnourished and then recovered. Forty Wistar rats were divided into a nourished group that received a normal protein diet (14% casein) for 90 days and a malnourished and recovered rats group (MR) that was submitted to 45 days of malnutrition with a hypoproteic diet (6% casein) followed by 45 days of a normal protein diet (14% casein). After the recovery period, all of the animals underwent cryoinjury in the right tibialis anterior muscle and euthanasia after 7, 14 and 21 days. The amount of connective tissue and the inflammation area was higher in the malnutrition recovered injury MR group (MRI) at 14 days post-injury (p < 0.05). Additionally, the cross-sectional area (CSA) of the regenerated fibers was decreased in the MRI (p < 0.05). The MyoD and myogenin protein levels were higher in the nourished injury group. Similar levels of TGF-β1 were found between groups. The proposed malnutrition protocol was effective in showing delayed changes in the regeneration process of the tibialis anterior muscle of young rats. Furthermore, we observed a delay in muscle repair even after nutritional recovery.


2017 ◽  
Vol 35 (4) ◽  
pp. 268-275 ◽  
Author(s):  
Jianqi Yu ◽  
Meng Wang ◽  
Junying Liu ◽  
Xiaoming Zhang ◽  
Shengbo Yang

Objective To investigate the effects of electroacupuncture (EA) on mRNA and protein expression of agrin, acetylcholine receptor (AChR)-ε and AChR-γ in a rat model of tibialis anterior muscle atrophy induced by sciatic nerve injection injury, and to examine the underlying mechanism of action. Methods Fifty-four adult Sprague-Dawley rats were divided into four groups: healthy control group (CON, n=6); sciatic nerve injury group (SNI, n=24), comprising rats euthanased at 1, 2, 4 and 6 weeks, respectively, after penicillin injection-induced SNI (n=6 each); CON+EA group (n=12), comprising healthy rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA at GB30 and ST36); and SNI+EA group, comprising rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA). The sciatic nerve functional index (SFI), tibialis anterior muscle weight, muscle fibre cross-sectional area (CSA), and changes in agrin, AChR-ε, and AChR-γ expression levels were analysed. Results Compared with the control group (CON), SNI rats showed decreased SFI. The weight of the tibialis anterior muscle and muscle fibre CSA decreased initially and recovered slightly over time. mRNA/protein expression of agrin and AChR-ε were downregulated and AChR-γ expression was detectable (vs zero expression in the CON/CON+EA groups). There were no significant differences in CON+EA versus CON groups. However, the SNI+EA group exhibited significant improvements compared with the untreated SNI group (p<0.05). Conclusions EA may alleviate tibialis anterior muscle atrophy induced by sciatic nerve injection injury by upregulating agrin and AChR-ε and downregulating AChR-γ.


2000 ◽  
Vol 167 (3) ◽  
pp. 417-428 ◽  
Author(s):  
R Lalani ◽  
S Bhasin ◽  
F Byhower ◽  
R Tarnuzzer ◽  
M Grant ◽  
...  

The mechanism of the loss of skeletal muscle mass that occurs during spaceflight is not well understood. Myostatin has been proposed as a negative modulator of muscle mass, and IGF-I and IGF-II are known positive regulators of muscle differentiation and growth. We investigated whether muscle loss associated with spaceflight is accompanied by increased levels of myostatin and a reduction in IGF-I and -II levels in the muscle, and whether these changes correlate with an increase in muscle proteolysis and apoptosis. Twelve male adult rats sent on the 17-day NASA STS-90 NeuroLab space flight were divided upon return to earth into two groups, and killed either 1 day later (R1) or after 13 days of acclimatization (R13). Ground-based control rats were maintained for the same periods in either vivarium (R3 and R15, respectively), or flight-simulated cages (R5 and R17, respectively). RNA and protein were isolated from the tibialis anterior, biceps femoris, quadriceps, and gastrocnemius muscles. Myostatin, IGF-I, IGF-II and proteasome 2c mRNA concentrations were determined by reverse transcription/PCR; myostatin and ubiquitin mRNA were also measured by Northern blot analysis; myostatin protein was estimated by immunohistochemistry; the apoptotic index and the release of 3-methylhistidine were determined respectively by the TUNEL assay and by HPLC. Muscle weights were 19-24% lower in the R1 rats compared with the control R3 and R5 rats, but were not significantly different after the recovery period. The myostatin/beta-actin mRNA ratios (means+/-s.e.m. ) were higher in the muscles of the R1 rats compared with the control R5 rats: 5.0-fold in tibialis (5.35 +/- 1.85 vs 1.07 +/- 0.26), 3.0-fold in biceps (2.46+/-0.70 vs 0.81 +/- 0.04), 1.9-fold in quadriceps (7.84 +/- 1.73 vs 4.08 +/- 0.52), and 2.2-fold in gastrocnemius (0.99 +/- 0.35 vs 0.44 +/- 0.17). These values also normalized upon acclimatization. Our antibody against a myostatin peptide was validated by detection of the recombinant human myostatin protein on Western blots, which also showed that myostatin immunostaining was increased in muscle sections from R1 rats, compared with control R3 rats, and normalized upon acclimatization. In contrast, IGF-II mRNA concentrations in the muscles from R1 rats were 64-89% lower than those in R3 animals. With the exception of the gastrocnemius, IGF-II was also decreased in R5 animals maintained in flight-simulated cages, and normalized upon acclimatization. The intramuscular IGF-I mRNA levels were not significantly different between the spaceflight rats and the controls. No increase was found in the proteolysis markers 3-methyl histidine, ubiquitin mRNA, and proteasome 2C mRNA. In conclusion, the loss of skeletal muscle mass that occurs during spaceflight is associated with increased myostatin mRNA and protein levels in the skeletal muscle, and a decrease in IGF-II mRNA levels. These alterations are normalized upon restoration of normal gravity and caging conditions. These data suggest that reciprocal changes in the expression of myostatin and IGF-II may contribute to the multifactorial pathophysiology of muscle atrophy that occurs during spaceflight.


2002 ◽  
Vol 92 (4) ◽  
pp. 1451-1457 ◽  
Author(s):  
M. M. Porter ◽  
S. Stuart ◽  
M. Boij ◽  
J. Lexell

Tibialis anterior muscle biopsies from moderately active men and women (21–30 yr; n= 30) were examined to determine potential gender differences in capillarization. The fiber type proportions [type I (T1) ∼73%] were unaffected by gender. The men (M) had significantly ( P < 0.001) larger fibers than the women (W), with a greater gender effect for type II (T2) fibers ( P < 0.001). The M and W had similar capillary densities (CD ∼390 capillaries/mm2), but the capillaries-to-fiber ratio (C/F) was higher in the M (M = 2.20 ± 0.35, W = 1.66 ± 0.32; P < 0.01). Capillary contacts (CC) were higher in T2 than T1 for the M ( P < 0.01), but not W, and M had greater CC ( P < 0.001). Both fiber area per capillary (FA/C) and fiber perimeter per capillary (FP/C) indicated that T1 fibers had greater capillarization than T2 fibers ( P < 0.001). There were no gender differences in T1 FA/C and T2 FA/C or T1 FP/C, but a gender difference existed for T2 FP/C (M = 60.5 ± 10.9, W = 70.6 ± 13.4; P < 0.01). The gender difference for C/F could be explained by fiber size; however, the physiological implications of the difference in T2 FP/C remains to be determined. In conclusion, despite gender differences for fiber size, overall, capillarization was similar between the men and women.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Kirsten N. Bott ◽  
Colton J.F. Watson ◽  
Cameron F. Leveille ◽  
Adam J. MacNeil ◽  
Sandra J. Peters ◽  
...  

1997 ◽  
Vol 83 (4) ◽  
pp. 1270-1275 ◽  
Author(s):  
Daniel R. Marsh ◽  
David S. Criswell ◽  
James A. Carson ◽  
Frank W. Booth

Marsh, Daniel R., David S. Criswell, James A. Carson, and Frank W. Booth. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats. J. Appl. Physiol. 83(4): 1270–1275, 1997.—Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.


Sign in / Sign up

Export Citation Format

Share Document