Comparative Evaluation of Depth of Cure of Bulk:Fill Composite Resin and Alkasite Restorative Material by Vicker’s Hardness Test

Author(s):  
Gowrish Bhat ◽  
Namrata Khanna ◽  
Mithra Nidarsh Hegde ◽  
Vandana Sadananda
2020 ◽  
Vol 8 (8) ◽  
pp. 420-428
Author(s):  
Santhosh P. Sagar ◽  
◽  
Sahadev Chickmagarvalli Krishnegowda ◽  
Praveen Kumar M.R ◽  
Bharath Makonahalli Jaganath ◽  
...  

2017 ◽  
Vol 7 (2) ◽  
pp. 97-102
Author(s):  
Sabita M Ram ◽  
Naisargi Shah ◽  
Amit M Gaikwad

ABSTRACT Aim To comparatively evaluate the fracture resistance of endodontically treated teeth restored with light-cured composite resin core using two different designs of prefabricated metal posts. Materials and methods A total of 30 single-rooted anterior teeth were selected for the study and endodontically treated. Teeth were sectioned 2 mm above the cementoenamel junction and were randomly divided into two groups (n = 15). Teeth in group I were restored with Parallel post—EG post and group II with parallel post with coronal flare—i post. Light-cured composite core buildup was done in all samples using a customized core former. Compressive load was applied at a 135° angle to the long axis of the tooth at a cross-head speed of 1 mm/minute until visible signs of fracture were observed. Levene's test and t-test were used to determine the difference of the failure loads between the groups (α = 0.05). Results The mean values (standard deviation [SD]) for fracture resistance were 295.55 N and 469.59 N for parallel post—EG post and parallel post with coronal flare—i post respectively. Since the p-value for the t-test is less than 0.05, it indicates that we should reject null hypothesis and conclude that the mean fracture load of parallel post with coronal flare—i post is significantly more than that of mean fracture load of parallel post—EG post. Conclusion The study conducted evaluated that the fracture resistance of endodontically treated teeth with parallel post with coronal flare—i post and core buildup had better strength as compared with parallel post—EG post and core buildup. Clinical significance The present study will help the clinician to select the appropriate prefabricated metal post that will fit exactly into the coronal flare of the canal improving clinical performance, thus increasing the longevity of the restoration. How to cite this article Gaikwad AM, Shah N, Ram SM. A Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth restored with Composite Resin Core using Two Different Designs of Prefabricated Metal Posts: An in vitro Study. J Contemp Dent 2017;7(2):97-102.


2011 ◽  
Vol 02 (03) ◽  
pp. 329-334 ◽  
Author(s):  
Ibrahim Hamouda ◽  
Hagag abd Elkader ◽  
Manal F. Badawi

2021 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Rahmi Khairani Aulia

ABSTRACT:Composite resins are currently the most popular restorative material in dentistry. This is due to good aesthetics and maximum conservation ability. Behind these advantages, there are disbenefits of composite resin materials, such as polymerization shrinkage, which can lead to restoration failure. Various attempts have been investigated to reduce the shrinkage incidence of composite resins, one of which is the technique of placing the restorative material into the cavity. The restoration filling technique is recognized as a significant factor in shrinkage stress. By using a special filling technique, the polymerization shrinkage damage stress can be reduced. There are several techniques in performing composite resin fillings, including bulk and incremental techniques. These techniques have their respective advantages and disadvantages. The aim of this literature review was to compare the physical properties of composite resin restorations with bulk filling and incremental techniques. Physical properties that being studied include polymerization shrinkage, stress shrinkage, degree of conversion, bonding strength, water resorption, color stability, and temperature increase. Comparing the two techniques, composite resin with incremental filling technique has superior physical properties compared to bulk technique. From the comparison of the two techniques, the composite resin with incremental filling technique has superior physical properties compared to the bulk technique, especially in higher conversion which causes lower shrinkage stress. This situation makes the incremental technique provide better bond strength, water resorption, color stability, and lower temperature rise.Keywords: Bulk, Composite Resin, Incremental,  Physical Properties, Restoration, Restoration Technique


2004 ◽  
Vol 15 (3) ◽  
pp. 199-203 ◽  
Author(s):  
Andresa Carla Obici ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Lourenço Correr Sobrinho ◽  
Mario Fernando de Goes ◽  
Simonides Consani

The aim of this study was to evaluate the depth of cure and Knoop hardness in the P60 composite resin photo-activated using different methods. A bipartite brass matrix (3 mm in diameter X 11 mm in height) was filled with the composite and photo-activation was performed using continuous light, exponential light, intermittent light, plasma arc curing (PAC) or light-emitting diodes (LED). After opening the matrix, the uncured material was removed with a steel spatula and the polymerized composite was measured using a pachymeter. The specimens were then included in self-curing acrylic resin and worn longitudinally and the hardness was measured on the surface and at depths of 1, 2, 3, 4 and 5 mm. The data were analyzed by ANOVA and Tukey's test (5%). The results showed that the depth of cure was higher with the intermittent light, followed by continuous light, exponential light, PAC and LED methods. Up to a depth of 2 mm, all methods revealed similar hardness values, but there were differences between them at other depths, at which LED demonstrated the lowest values followed by PAC.


Sign in / Sign up

Export Citation Format

Share Document