scholarly journals Applying first principles to study the structural, electronic, and magnetic properties of Pr adsorbed ASiNRs

Applying first-principles calculations, the investigation of the geometrical and electronic properties of Pr adsorption armchair silicene nanoribbons structure has been established. The results show that the bandgap doped Pr has been changed, which is the case for chemical adsorption on the surface of ASiNRs; this material became metallic with the peak of valance band contact fermi level. Moreover, the survey to find the optimal height 1.82 Å of Pr and 2.24 Å bond length Si-Si, and Si-Si-Si bond angle 108005’, energy adsorption is -7.65 eV, buckling is 0.43 Å with structure stability close to the pristine case, has brought good results for actively creating newly applied materials for the spintronic and optoelectronics field in the future.

2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


Author(s):  
KAI LI ◽  
ANNA SHIN HWA LEE ◽  
YONG-WEI ZHANG ◽  
HUI PAN

In this paper, first-principles calculations are carried out to study the electronic and magnetic properties of silicene and silicane nanoribbons, with and without H -passivation at the edges. We predict that the armchair nanoribbons are nonmagnetic and semiconducting. Interestingly, the band gaps of armchair silicene nanoribbons show oscillating behavior as the ribbon width increases. When their edges are passivated with H atoms, However, the oscillating phase is reversed. The zigzag nanoribbons are anti-ferromagnetic and semiconducting in their ground states, except that the zigzag silicane nanoribbons with edges passivated by H atoms are nonmagnetic. The zigzag silicane nanoribbons with bare edges show the highest magnetic moments in their ground states. The band gaps of zigzag nanoribbons in their ground states decrease with the increment of width. The metastable states of zigzag silicene nanoribbons are ferromagnetic and metallic. The zigzag silicane nanoribbons with bare edges are ferromagnetic and semiconducting in their metastable states. The silicene/silicane nanoribbons with attractive functions, which are achievable by edge engineering or external fields, may be applied to spintronic technologies and nanodevices.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 81943-81956 ◽  
Author(s):  
Jing Wu ◽  
XiaoYu Chong ◽  
Rong Zhou ◽  
YeHua Jiang ◽  
Jing Feng

The equilibrium crystal structures, stability, elastic properties, hardness and electronic structures of all the Fe–P binary compounds are investigated systematically by first principles calculations.


2015 ◽  
Vol 645-646 ◽  
pp. 325-329
Author(s):  
Jin Long Tang ◽  
Jun Nan Zhong ◽  
Cai Wen

Based on first-principles calculations, we have investigated atomic and electronic structures of 4H-SiC crystal doped by N, P and As elements as n-type dopants. We have obtained the bond lengths of the optimization system, as well as the impurity levels, the band structure and the density of states. The results show that the higher impurity level above the Fermi level is observed when 4H-SiC doped by N with concentration as 6.25% in these dopants, and the band gap of 4H-SiC decreases while the doping concentration or the atomic number of dopant increases.


2019 ◽  
Vol 21 (37) ◽  
pp. 21070-21083 ◽  
Author(s):  
Asadollah Bafekry ◽  
Saber Farjami Shayesteh ◽  
Francois M. Peeters

Using first-principles calculations the effects of topological defects, vacancies, Stone–Wales and anti-site and substitution of atoms, on the structure and electronic properties of monolayer C3N are investigated.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850348
Author(s):  
Xiao-Qin Feng ◽  
Hong-Xia Lu ◽  
Jian-Ming Jia ◽  
Chang-Shun Wang

Systematic ab initio calculations reveal that the electronic and magnetic properties are modified by superlattices of zigzag and armchair Boron nitride nanosheet (BNNS). Superlattices are constructed by partially hydrogenated B and N atoms of BNNS. The results show that only no more than half N atoms hydrogenated superlattices are antiferromagnetic. The electronic properties of zigzag BN nanosheet superlattices depend on the degree of hydrogenation of N atoms sensitively. As a result, changing the degree of hydrogenation of N atoms results in the transition from semiconductor to metal.


2020 ◽  
pp. 2150002
Author(s):  
Kaijun Liu ◽  
Weihao Zeng ◽  
Danyang Liu ◽  
Ruge Quhe

Poisson’s ratios of two-dimensional (2D) all-inorganic perovskites Cs2PbX4 (X = Cl, Br, I) have been calculated by the first-principles calculations. The contribution of each geometric parameter (bond length [Formula: see text], bond angle [Formula: see text], rotation angle [Formula: see text], and tilt angle [Formula: see text]) to Poisson’s ratio is obtained analytically. Through a comprehensive analysis of the geometric deformations of the perovskite under the uniaxial strain, we find that Poisson’s ratios of the perovskites are sensitive to the change of the bond length [Formula: see text] and the bond angle [Formula: see text]. In addition, the value of the bond angle [Formula: see text] in the strain-free structure mainly determines the high in-plane anisotropy of Poisson’s ratios in Cs2PbX4.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 309
Author(s):  
Min Luo ◽  
Bin Yu ◽  
Yu-e Xu

First-principles calculations were used to investigate the electronic properties of the SiC/GeC nanosheet (the thickness was about 8 Å). With no electric field (E-field), the SiC/GeC nanosheet was shown to have a direct bandgap of 1.90 eV. In the band structure, the valence band of the SiC/GeC nanosheet was mainly made up of C-p, while the conduction band was mainly made up of C-p, Si-p, and Ge-p, respectively. Application of the E-field to the SiC/GeC nanosheet was found to facilitate modulation of the bandgap, regularly reducing it to zero, which was linked to the direction and strength of the E-field. The major bandgap modulation was attributed to the migration of C-p, Si-p, and Ge-p orbitals around the Fermi level. Our conclusions might give some theoretical guidance for the development and application of the SiC/GeC nanosheet.


Sign in / Sign up

Export Citation Format

Share Document