scholarly journals “Active” and “passive” learning of three-dimensional object structure within an immersive virtual reality environment

2002 ◽  
Vol 34 (3) ◽  
pp. 383-390 ◽  
Author(s):  
K. H. James ◽  
G. K. Humphrey ◽  
T. Vilis ◽  
B. Corrie ◽  
R. Baddour ◽  
...  
Author(s):  
Kevin Lesniak ◽  
Janis Terpenny ◽  
Conrad S. Tucker ◽  
Chimay Anumba ◽  
Sven G. Bilén

With design teams becoming more distributed, the sharing and interpreting of complex data about design concepts/prototypes and environments have become increasingly challenging. The size and quality of data that can be captured and shared directly affects the ability of receivers of that data to collaborate and provide meaningful feedback. To mitigate these challenges, the authors of this work propose the real-time translation of physical objects into an immersive virtual reality environment using readily available red, green, blue, and depth (RGB-D) sensing systems and standard networking connections. The emergence of commercial, off-the-shelf RGB-D sensing systems, such as the Microsoft Kinect, has enabled the rapid three-dimensional (3D) reconstruction of physical environments. The authors present a method that employs 3D mesh reconstruction algorithms and real-time rendering techniques to capture physical objects in the real world and represent their 3D reconstruction in an immersive virtual reality environment with which the user can then interact. Providing these features allows distributed design teams to share and interpret complex 3D data in a natural manner. The method reduces the processing requirements of the data capture system while enabling it to be portable. The method also provides an immersive environment in which designers can view and interpret the data remotely. A case study involving a commodity RGB-D sensor and multiple computers connected through standard TCP internet connections is presented to demonstrate the viability of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1069
Author(s):  
Deyby Huamanchahua ◽  
Adriana Vargas-Martinez ◽  
Ricardo Ramirez-Mendoza

Exoskeletons are an external structural mechanism with joints and links that work in tandem with the user, which increases, reinforces, or restores human performance. Virtual Reality can be used to produce environments, in which the intensity of practice and feedback on performance can be manipulated to provide tailored motor training. Will it be possible to combine both technologies and have them synchronized to reach better performance? This paper consists of the kinematics analysis for the position and orientation synchronization between an n DoF upper-limb exoskeleton pose and a projected object in an immersive virtual reality environment using a VR headset. To achieve this goal, the exoskeletal mechanism is analyzed using Euler angles and the Pieper technique to obtain the equations that lead to its orientation, forward, and inverse kinematic models. This paper extends the author’s previous work by using an early stage upper-limb exoskeleton prototype for the synchronization process.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878363 ◽  
Author(s):  
Nien-Tsu Hu ◽  
Pu-Sheng Tsai ◽  
Ter-Feng Wu ◽  
Jen-Yang Chen ◽  
Lin Lee

This article explores the construction of a geometric virtual reality platform for the environmental navigation. Non-panoramic photos and wearable electronics with Bluetooth wireless transmission functions are used to combine the user’s actions with the virtual reality environment in a first-person virtual reality platform. The 3ds Max animation software is used to create three-dimensional models of real buildings. These models are combined with the landscape models in Unity3d to create a virtual campus scene that matches real landscape. The wearable device included an ATMega168 chip as a microcontroller; it was connected to a three-axis accelerometer, a gyroscope, and a Bluetooth transmitter to detect and transmit various movements of the user. Although the development of the mechatronics, software, and engineering involved in the three-dimensional animation are the main objective, we believe that the methods and techniques can be modified for various purposes. After the system architecture was created and the operations of the platform were verified, wearable devices and virtual reality scenes are concluded to be able to be used together seamlessly.


2021 ◽  
Vol 58 (3) ◽  
pp. 137-142
Author(s):  
A.O. Dauitbayeva ◽  
◽  
A.A. Myrzamuratova ◽  
A.B. Bexeitova ◽  
◽  
...  

This article is devoted to the issues of visualization and information processing, in particular, improving the visualization of three-dimensional objects using augmented reality and virtual reality technologies. The globalization of virtual reality has led to the introduction of a new term "augmented reality"into scientific circulation. If the current technologies of user interfaces are focused mainly on the interaction of a person and a computer, then augmented reality with the help of computer technologies offers improving the interface of a person and the real world around them. Computer graphics are perceived by the system in the synthesized image in connection with the reproduction of monocular observation conditions, increasing the image volume, spatial arrangement of objects in a linear perspective, obstructing one object to another, changing the nature of shadows and tones in the image field. The experience of observation is of great importance for the perception of volume and space, so that the user "completes" the volume structure of the observed representation. Thus, the visualization offered by augmented reality in a real environment familiar to the user contributes to a better perception of three-dimensional object.


2020 ◽  
Author(s):  
Alexandre C. Silva ◽  
Alexandre Cardoso ◽  
Edgard A. Lamounier Jr ◽  
Camilo L. Barreto Jr ◽  
Diogo M. Azevedo ◽  
...  

This project shows the results obtained from a new strategy based on Virtual Reality techniques, which intends to minimize the issues caused on the operation of electric power substations due to the lack of spatial and functional information on the traditional operation interfaces. For this purpose, a three-dimensional interactive virtual reality environment was built in a realistic and accurate way regarding a energy electric company of Minas Gerais – Brazil (CEMIG) substation and afterwards implanted it in its operation center for tasks related to its functioning. Lastly, tests were applied to the operators to obtain results aiming at the contextualized problems.


Sign in / Sign up

Export Citation Format

Share Document