scholarly journals Rapid and coarse face detection: With a lack of evidence for a nasal-temporal asymmetry

2020 ◽  
Vol 82 (4) ◽  
pp. 1883-1895
Author(s):  
Laura Cabral ◽  
Bobby Stojanoski ◽  
Rhodri Cusack

AbstractHumans have structures dedicated to the processing of faces, which include cortical components (e.g., areas in occipital and temporal lobes) and subcortical components (e.g., superior colliculus and amygdala). Although faces are processed more quickly than stimuli from other categories, there is a lack of consensus regarding whether subcortical structures are responsible for rapid face processing. In order to probe this, we exploited the asymmetry in the strength of projections to subcortical structures between the nasal and temporal hemiretina. Participants detected faces from unrecognizable control stimuli and performed the same task for houses. In Experiments 1 and 3, at the fastest reaction times, participants detected faces more accurately than houses. However, there was no benefit of presenting to the subcortical pathway. In Experiment 2, we probed the coarseness of the rapid pathway, making the foil stimuli more similar to faces and houses. This eliminated the rapid detection advantage, suggesting that rapid face processing is limited to coarse representations. In Experiment 4, we sought to determine whether the natural difference between spatial frequencies of faces and houses were driving the effects seen in Experiments 1 and 3. We spatially filtered the faces and houses so that they were matched. Better rapid detection was again found for faces relative to houses, but we found no benefit of preferentially presenting to the subcortical pathway. Taken together, the results of our experiments suggest a coarse rapid detection mechanism, which was not dependent on spatial frequency, with no advantage for presenting preferentially to subcortical structures.

2017 ◽  
Author(s):  
Laura Cabral ◽  
Bobby Stojanoski ◽  
Rhodri Cusack

Humans have structures dedicated to the processing of faces, which include cortical components (e.g. areas in occipital and temporal lobes) and subcortical components (e.g. superior colliculus and amygdala). Although faces are processed more quickly than stimuli from other categories, there is a lack of consensus regarding whether cortical or subcortical structures are responsible for rapid face processing. In order to probe this, we exploited the asymmetry in the strength of projections to subcortical structures between the nasal and temporal hemiretina. Participants detected faces from unrecognizable control stimuli and performed the same task for houses. In Experiments 1 and 3, at the fastest reaction times, participants detected faces more accurately than houses. However, there was no benefit of presenting to the subcortical pathway. In Experiment 2, we probed the coarseness of the rapid pathway, making the foil stimuli more similar to faces and houses. This eliminated the rapid detection advantage, suggesting that rapid face processing is limited to coarse representations. In Experiment 4, we sought to determine whether the natural difference between spatial frequencies of faces and houses were driving the effects seen in Experiments 1 and 3. We spatially filtered the faces and houses so that they were matched. Better rapid detection was again found for faces relative to houses, but we found no benefit of preferentially presenting to the subcortical pathway. Taken together, the results of our experiments suggest a cortical, coarse rapid detection mechanism, which was not dependent on spatial frequency.


2005 ◽  
Vol 17 (10) ◽  
pp. 1652-1666 ◽  
Author(s):  
Roberto Caldara ◽  
Philippe Schyns ◽  
Eugéne Mayer ◽  
Marie L. Smith ◽  
Frédéric Gosselin ◽  
...  

One of the most impressive disorders following brain damage to the ventral occipitotemporal cortex is prosopagnosia, or the inability to recognize faces. Although acquired prosopagnosia with preserved general visual and memory functions is rare, several cases have been described in the neuropsychological literature and studied at the functional and neural level over the last decades. Here we tested a brain-damaged patient (PS) presenting a deficit restricted to the category of faces to clarify the nature of the missing and preserved components of the face processing system when it is selectively damaged. Following learning to identify 10 neutral and happy faces through extensive training, we investigated patient PS's recognition of faces using Bubbles, a response classification technique that sampled facial information across the faces in different bandwidths of spatial frequencies [Gosselin, F., & Schyns, P. E., Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41, 2261-2271, 2001]. Although PS gradually used less information (i.e., the number of bubbles) to identify faces over testing, the total information required was much larger than for normal controls and decreased less steeply with practice. Most importantly, the facial information used to identify individual faces differed between PS and controls. Specifically, in marked contrast to controls, PS did not use the optimal eye information to identify familiar faces, but instead the lower part of the face, including the mouth and the external contours, as normal observers typically do when processing unfamiliar faces. Together, the findings reported here suggest that damage to the face processing system is characterized by an inability to use the information that is optimal to judge identity, focusing instead on suboptimal information.


Perception ◽  
1986 ◽  
Vol 15 (4) ◽  
pp. 473-482 ◽  
Author(s):  
Andrew T Smith ◽  
Frances Early ◽  
Sarah C Grogan

Recent studies have provided evidence that dyslexic children tend to show longer visual persistence than control children when presented with low-spatial-frequency grating stimuli. The possibility that this phenomenon might reflect an impairment of inhibitory Y-cell activity in the visual system of dyslexics has been investigated. A flicker masking technique was used to mask Y-cell activity selectively in a group of dyslexic boys and a group of age-matched controls. There were no overall differences in reaction times to the offsets of grating patterns of various spatial frequencies between the groups, and no differences between subgroups defined by age, degree of reading impairment, or any other criterion. The results show no evidence of abnormal Y-cell function in developmental dyslexia.


2011 ◽  
Vol 23 (7) ◽  
pp. 1723-1740 ◽  
Author(s):  
Nicholas Furl ◽  
Lúcia Garrido ◽  
Raymond J. Dolan ◽  
Jon Driver ◽  
Bradley Duchaine

Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a “core” visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined “fusiform face areas” (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wataru Sato

The detection of food is crucial for our survival and health. Earlier experimental psychological studies have demonstrated that participants detect food more rapidly than non-food stimuli. However, it remains unknown whether color, which was shown to have various influences on food processing, can modulate the detection of food. To address this issue, a psychological experiment was conducted using a visual search paradigm in which photographs of food (fast food and Japanese food) and kitchen utensils were presented alongside images of non-food distractors (cars), with both color and gray images used. Participants used a key to indicate whether one item was different from the rest, and their reaction times (RTs) were measured. RTs for the detection of both food types were shorter than for the kitchen utensils when color images were used, but not when gray images were used; moreover, the RTs were slower for gray images than for color images for both food types but not for kitchen utensils. These results indicate that color facilitates rapid detection of food in the environment.


Perception ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 214-227
Author(s):  
Nicholas Watier ◽  
Brock DeGagne

This study examined whether latent facial signals of threat can be detected at more extreme ranges of spatial frequencies (SFs), and thus with fewer frequencies from an optimal middle band for face identification, compared with latent nonthreatening facial signals. Using an adaptive staircase procedure and a two-interval forced-choice same-different task, SF thresholds from the lower and higher ends of the SF spectrum were obtained for nonexpressive threatening and nonthreatening faces. Threatening faces were discriminated from neutral faces more quickly and accurately, and engendered more extreme SF thresholds, compared with nonthreatening faces. The results indicate that the components of latent threatening facial signals can be detected under a greater degree of impoverished visual information for face processing compared with their nonthreatening counterparts.


2011 ◽  
Vol 28 (6) ◽  
pp. 529-541 ◽  
Author(s):  
BENOIT MUSEL ◽  
RUXANDRA HERA ◽  
SYLVIE CHOKRON ◽  
DAVID ALLEYSSON ◽  
CHRISTOPHE CHIQUET ◽  
...  

AbstractAge-related macular degeneration (AMD) is characterized by a central vision loss. We explored the relationship between the retinal lesions in AMD patients and the processing of spatial frequencies in natural scene categorization. Since the lesion on the retina is central, we expected preservation of low spatial frequency (LSF) processing and the impairment of high spatial frequency (HSF) processing. We conducted two experiments that differed in the set of scene stimuli used and their exposure duration. Twelve AMD patients and 12 healthy age-matched participants in Experiment 1 and 10 different AMD patients and 10 healthy age-matched participants in Experiment 2 performed categorization tasks of natural scenes (Indoors vs. Outdoors) filtered in LSF and HSF. Experiment 1 revealed that AMD patients made more no-responses to categorize HSF than LSF scenes, irrespective of the scene category. In addition, AMD patients had longer reaction times to categorize HSF than LSF scenes only for indoors. Healthy participants’ performance was not differentially affected by spatial frequency content of the scenes. In Experiment 2, AMD patients demonstrated the same pattern of errors as in Experiment 1. Furthermore, AMD patients had longer reaction times to categorize HSF than LSF scenes, irrespective of the scene category. Again, spatial frequency processing was equivalent for healthy participants. The present findings point to a specific deficit in the processing of HSF information contained in photographs of natural scenes in AMD patients. The processing of LSF information is relatively preserved. Moreover, the fact that the deficit is more important when categorizing HSF indoors, may lead to new perspectives for rehabilitation procedures in AMD.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Alessia Celeghin ◽  
Valentina Galetto ◽  
Marco Tamietto ◽  
Marina Zettin

After a Traumatic Brain Injury (TBI), emotion recognition is typically impaired. This is commonly attributed to widespread multifocal damage in cortical areas involved in emotion processing as well as to Diffuse Axonal Injury (DAI). However, current models suggest that emotional recognition is subserved by a distributed network cantered on the amygdala, which involves both cortical and subcortical structures. While the cortical system is preferentially tuned to process high spatial frequencies, the subcortical networks are more sensitive to low-spatial frequencies. The aim of this study was to evaluate whether emotion perception from low-spatial frequencies underpinning the subcortical system is relatively preserved in TBI patients. We tested a group of 14 subjects with severe TBI and 20 matched healthy controls. Each participant was asked to recognize the emotion expressed by each stimulus that consisted of happy and fearful faces, filtered for their low and high spatial frequencies components. Results in TBI patients’ performances showed that low-spatial frequency expressions were recognized with higher accuracy and faster reaction times when compared to high spatial frequency stimuli. On the contrary, healthy controls did not show any effect in the two conditions, neither for response accuracy nor for reaction times. The outcomes of this study indicate that emotion perception from low-spatial frequencies is relatively preserved in TBI, thereby suggesting spare of functioning in the subcortical system in mediating emotion recognition.


2011 ◽  
Vol 366 (1571) ◽  
pp. 1726-1738 ◽  
Author(s):  
Anthony P. Atkinson ◽  
Ralph Adolphs

Face processing relies on a distributed, patchy network of cortical regions in the temporal and frontal lobes that respond disproportionately to face stimuli, other cortical regions that are not even primarily visual (such as somatosensory cortex), and subcortical structures such as the amygdala. Higher-level face perception abilities, such as judging identity, emotion and trustworthiness, appear to rely on an intact face-processing network that includes the occipital face area (OFA), whereas lower-level face categorization abilities, such as discriminating faces from objects, can be achieved without OFA, perhaps via the direct connections to the fusiform face area (FFA) from several extrastriate cortical areas. Some lesion, transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) findings argue against a strict feed-forward hierarchical model of face perception, in which the OFA is the principal and common source of input for other visual and non-visual cortical regions involved in face perception, including the FFA, face-selective superior temporal sulcus and somatosensory cortex. Instead, these findings point to a more interactive model in which higher-level face perception abilities depend on the interplay between several functionally and anatomically distinct neural regions. Furthermore, the nature of these interactions may depend on the particular demands of the task. We review the lesion and TMS literature on this topic and highlight the dynamic and distributed nature of face processing.


Sign in / Sign up

Export Citation Format

Share Document