scholarly journals Emotion Recognition in Low-Spatial Frequencies Is Partly Preserved following Traumatic Brain Injury

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Alessia Celeghin ◽  
Valentina Galetto ◽  
Marco Tamietto ◽  
Marina Zettin

After a Traumatic Brain Injury (TBI), emotion recognition is typically impaired. This is commonly attributed to widespread multifocal damage in cortical areas involved in emotion processing as well as to Diffuse Axonal Injury (DAI). However, current models suggest that emotional recognition is subserved by a distributed network cantered on the amygdala, which involves both cortical and subcortical structures. While the cortical system is preferentially tuned to process high spatial frequencies, the subcortical networks are more sensitive to low-spatial frequencies. The aim of this study was to evaluate whether emotion perception from low-spatial frequencies underpinning the subcortical system is relatively preserved in TBI patients. We tested a group of 14 subjects with severe TBI and 20 matched healthy controls. Each participant was asked to recognize the emotion expressed by each stimulus that consisted of happy and fearful faces, filtered for their low and high spatial frequencies components. Results in TBI patients’ performances showed that low-spatial frequency expressions were recognized with higher accuracy and faster reaction times when compared to high spatial frequency stimuli. On the contrary, healthy controls did not show any effect in the two conditions, neither for response accuracy nor for reaction times. The outcomes of this study indicate that emotion perception from low-spatial frequencies is relatively preserved in TBI, thereby suggesting spare of functioning in the subcortical system in mediating emotion recognition.

2021 ◽  
pp. 0271678X2098515
Author(s):  
Margalit Haber ◽  
Franck Amyot ◽  
Cillian E Lynch ◽  
Danielle K Sandsmark ◽  
Kimbra Kenney ◽  
...  

Traumatic Brain Injury (TBI) is associated with both diffuse axonal injury (DAI) and diffuse vascular injury (DVI), which result from inertial shearing forces. These terms are often used interchangeably, but the spatial relationships between DAI and DVI have not been carefully studied. Multimodal magnetic resonance imaging (MRI) can help distinguish these injury mechanisms: diffusion tensor imaging (DTI) provides information about axonal integrity, while arterial spin labeling (ASL) can be used to measure cerebral blood flow (CBF), and the reactivity of the Blood Oxygen Level Dependent (BOLD) signal to a hypercapnia challenge reflects cerebrovascular reactivity (CVR). Subjects with chronic TBI (n = 27) and healthy controls (n = 14) were studied with multimodal MRI. Mean values of mean diffusivity (MD), fractional anisotropy (FA), CBF, and CVR were extracted for pre-determined regions of interest (ROIs). Normalized z-score maps were generated from the pool of healthy controls. Abnormal ROIs in one modality were not predictive of abnormalities in another. Approximately 9-10% of abnormal voxels for CVR and CBF also showed an abnormal voxel value for MD, while only 1% of abnormal CVR and CBF voxels show a concomitant abnormal FA value. These data indicate that DAI and DVI represent two distinct TBI endophenotypes that are spatially independent.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 886-887
Author(s):  
Andrei Irimia ◽  
Ammar Dharani ◽  
Van Ngo ◽  
David Robles ◽  
Kenneth Rostowsky

Abstract Mild traumatic brain injury (mTBI) affects white matter (WM) integrity and accelerates neurodegeneration. This study assesses the effects of age, sex, and cerebral microbleed (CMB) load as predictors of WM integrity in 70 subjects aged 18-77 imaged acutely and ~6 months after mTBI using diffusion tensor imaging (DTI). Two-tensor unscented Kalman tractography was used to segment and cluster 73 WM structures and to map changes in their mean fractional anisotropy (FA), a surrogate measure of WM integrity. Dimensionality reduction of mean FA feature vectors was implemented using principal component (PC) analysis, and two prominent PCs were used as responses in a multivariate analysis of covariance. Acutely and chronically, older age was significantly associated with lower FA (F2,65 = 8.7, p < .001, η2 = 0.2; F2,65 = 12.3, p < .001, η2 = 0.3, respectively), notably in the corpus callosum and in dorsolateral temporal structures, confirming older adults’ WM vulnerability to mTBI. Chronically, sex was associated with mean FA (F2,65 = 5.0, p = 0.01, η2 = 0.1), indicating males’ greater susceptibility to WM degradation. Acutely, a significant association was observed between CMB load and mean FA (F2,65 = 5.1, p = 0.009, η2 = 0.1), suggesting that CMBs reflect the acute severity of diffuse axonal injury. Together, these findings indicate that older age, male sex, and CMB load are risk factors for WM degeneration. Future research should examine how sex- and age-mediated WM degradation lead to cognitive decline and connectome degeneration after mTBI.


2021 ◽  
pp. 1-12
Author(s):  
Kody R. Campbell ◽  
Lucy Parrington ◽  
Robert J. Peterka ◽  
Douglas N. Martini ◽  
Timothy E. Hullar ◽  
...  

BACKGROUND: Little is known on the peripheral and central sensory contributions to persistent dizziness and imbalance following mild traumatic brain injury (mTBI). OBJECTIVE: To identify peripheral vestibular, central integrative, and oculomotor causes for chronic symptoms following mTBI. METHODS: Individuals with chronic mTBI symptoms and healthy controls (HC) completed a battery of oculomotor, peripheral vestibular and instrumented posturography evaluations and rated subjective symptoms on validated questionnaires. We defined abnormal oculomotor, peripheral vestibular, and central sensory integration for balance measures among mTBI participants as falling outside a 10-percentile cutoff determined from HC data. A X-squared test associated the proportion of normal and abnormal responses in each group. Partial Spearman’s rank correlations evaluated the relationships between chronic symptoms and measures of oculomotor, peripheral vestibular, and central function for balance control. RESULTS: The mTBI group (n = 58) had more abnormal measures of central sensory integration for balance than the HC (n = 61) group (mTBI: 41% –61%; HC: 10%, p’s <  0.001), but no differences on oculomotor and peripheral vestibular function (p >  0.113). Symptom severities were negatively correlated with central sensory integration for balance scores (p’s <  0.048). CONCLUSIONS: Ongoing balance complaints in people with chronic mTBI are explained more by central sensory integration dysfunction rather than peripheral vestibular or oculomotor dysfunction.


2016 ◽  
Vol 37 (03) ◽  
pp. 174-181
Author(s):  
Benjamim Vale ◽  
Juçara Castro ◽  
Marx Araújo ◽  
Herb Morais ◽  
Lívio Macêdo

Objectives To determine the relationship between alcohol consumption and the incidence of traumatic brain injury (TBI) with diffuse axonal injury (DAI), determining these indices, checking acquired comorbidities and characterizing the patients by gender, age and race/color, as well as describing the characteristics of the motor vehicle collision (vehicle, period of the day, day of the week and site) in people admitted to an emergency hospital in the city of Teresina, in the state of Piauí, Brazil. Methods We have analyzed the data contained in the medical records of patients admitted with a history of motor vehicle collision and severe TBI in intensive care units, based on the forms provided by the Mobile Emergency Care Service (SAMU, in the Portuguese acronym) in the period between February 28 and November 28, 2013. Results In the period covered by the present study, 200 individuals were analyzed, and 54 (27%) had consumed alcohol; of these 11 had DAI. Of the total sample, 17% (34) presented DAI, however, with unknown data regarding the consumption of alcoholic beverages. Conclusion Considering the data, we observed that the profile of the head trauma patients are brown men, mostly (53.5%) aged between 15 and 30 years. The collisions occurred mostly on weekends and at night (55%), and 89.5% of the crashes involved motorcycles.


2008 ◽  
Vol 66 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Dionei F. Morais ◽  
Antonio R. Spotti ◽  
Waldir A. Tognola ◽  
Felipe F.P. Gaia ◽  
Almir F. Andrade

PURPOSE: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. METHOD: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. RESULTS: Statistical significant differences (McNemar test): ocurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. CONCLUSION: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI.


2017 ◽  
Author(s):  
Ghaith Tarawneh ◽  
Vivek Nityananda ◽  
Ronny Rosner ◽  
Steven Errington ◽  
William Herbert ◽  
...  

AbstractRecently, we showed a novel property of the Hassenstein-Reichardt detector: namely, that insect motion detection can be masked by “invisible” noise, i.e. visual noise presented at spatial frequencies to which the animals do not respond when presented as a signal. While this study compared the effect of noise on human and insect motion perception, it used different ways of quantifying masking in two species. This was because the human studies measured contrast thresholds, which were too time-consuming to acquire in the insect given the large number of stimulus parameters examined. Here, we run longer experiments in which we obtained contrast thresholds at just two signal and two noise frequencies. We examine the increase in threshold produced by noise at either the same frequency as the signal, or a different frequency. We do this in both humans and praying mantises (Sphodromantis lineola), enabling us to compare these species directly in the same paradigm. Our results confirm our earlier finding: whereas in humans, visual noise masks much more effectively when presented at the signal spatial frequency, in insects, noise is roughly equivalently effective whether presented at the same frequency or a lower frequency. In both species, visual noise presented at a higher spatial frequency is a less effective mask.Summary StatementWe here show that despite having similar motion detection systems, insects and humans differ in the effect of low and high spatial frequency noise on their contrast thresholds.


Author(s):  
Rika M. Wright ◽  
K. T. Ramesh

With the increase in the number of soldiers sustaining traumatic brain injury from military incidents and the recent attention on sports related traumatic brain injury, there has been a focused effort to develop preventative and treatment methods for traumatic brain injury (TBI). Traumatic brain injury is caused by mechanical loading to the head, such as from impacts, sudden accelerations, or blast loading, and the pathology can range from focal damage in the brain to widespread diffuse injury [1]. In this study, we investigate the injury mechanisms of diffuse axonal injury (DAI), which accounts for the second largest percentage of deaths due to brain trauma [2]. DAI is caused by sudden inertial loads to the head, and it is characterized by damage to neural axons. Despite the extensive research on DAI, the coupling between the mechanical loading to the head and the damage at the cellular level is still poorly understood. Unlike previous computational models that use macroscopic stress and strain measures to determine injury, a cellular injury criterion is used in this work as numerous studies have shown that cellular strain can be related to the functional damage of neurons. The effectiveness of using this cellular injury criterion to predict damage in a finite element model of DAI is investigated.


2012 ◽  
Vol 25 (0) ◽  
pp. 121
Author(s):  
Marcia Grabowecky ◽  
Aleksandra Sherman ◽  
Satoru Suzuki

We have previously demonstrated a linear perceptual relationship between auditory amplitude-modulation (AM) rate and visual spatial-frequency using gabors as the visual stimuli. Can this frequency-based auditory–visual association influence perception of natural scenes? Participants consistently matched specific auditory AM rates to diverse visual scenes (nature, urban, and indoor). A correlation analysis indicated that higher subjective density ratings were associated with faster AM-rate matches. Furthermore, both the density ratings and AM-rate matches were relatively scale invariant, suggesting that the underlying crossmodal association is between visual coding of object-based density and auditory coding of AM rate. Based on these results, we hypothesized that concurrently presented fast (7 Hz) or slow (2 Hz) AM-rates might influence how visual attention is allocated to dense or sparse regions within a scene. We tested this hypothesis by monitoring eye movements while participants examined scenes for a subsequent memory task. To determine whether fast or slow sounds guided eye movements to specific spatial frequencies, we computed the maximum contrast energy at each fixation across 12 spatial frequency bands ranging from 0.06–10.16 cycles/degree. We found that the fast sound significantly guided eye movements toward regions of high spatial frequency, whereas the slow sound guided eye movements away from regions of high spatial frequency. This suggests that faster sounds may promote a local scene scanning strategy, acting as a ‘filter’ to individuate objects within dense regions. Our results suggest that auditory AM rate and visual object density are crossmodally associated, and that this association can modulate visual inspection of scenes.


Sign in / Sign up

Export Citation Format

Share Document