scholarly journals Lipid nanostructures for antioxidant delivery: a comparative preformulation study

2019 ◽  
Vol 10 ◽  
pp. 1789-1801 ◽  
Author(s):  
Elisabetta Esposito ◽  
Maddalena Sguizzato ◽  
Markus Drechsler ◽  
Paolo Mariani ◽  
Federica Carducci ◽  
...  

This investigation is a study of new lipid nanoparticles for cutaneous antioxidant delivery. Several molecules, such as α-tocopherol and retinoic acid, have been shown to improve skin condition and even counteract the effects of exogenous stress factors such as smoking on skin aging. This work describes the design and development of lipid nanoparticles containing antioxidant agents (α-tocopherol or retinoic acid) to protect human skin against pollutants. Namely, solid lipid nanoparticles and nanostructured lipid carriers were prepared using different lipids (tristearin, compritol, precirol or suppocire) in the presence or absence of caprylic/capric triglycerides. The formulations were characterized by particle size analysis, cryogenic transmission electron microscopy, small-angle X-ray diffraction, encapsulation efficiency, preliminary stability, in vitro cytotoxicity and protection against cigarette smoke. Nanostructured lipid carriers were found to reduce agglomerate formation and provided better dimensional stability, as compared to solid lipid nanoparticles, suggesting their suitability for antioxidant loading. Based on the preformulation study, tristearin-based nanostructured lipid carriers loaded with α-tocopherol were selected for ex vivo studies since they displayed superior physico-chemical properties as compared to the other nanostructured lipid carriers compositions. Human skin explants were treated with α-tocopherol-loaded nanostructured lipid carriers and then exposed to cigarette smoke, and the protein levels of the stress-induced enzyme heme oxygenase were analyzed in skin homogenates. Interestingly, it was found that pretreatment with the nanoformulation resulted in significantly reduced heme oxygenase upregulation as compared to control samples, suggesting a protective effect provided by the nanoparticles.

2011 ◽  
Vol 6 (4) ◽  
pp. 240-250 ◽  
Author(s):  
Rajashree Hirlekar ◽  
Harshal Garse ◽  
Vilasrao Kadam

2020 ◽  
Vol 8 (6) ◽  
pp. 495-510
Author(s):  
Manoj Kumar ◽  
Garima Sharma ◽  
Dinesh Singla ◽  
Sukhjeet Singh ◽  
Vandita Kakkar ◽  
...  

Background:: All-trans retinoic acid (ATRA) is widely employed in the treatment of various proliferative and inflammatory diseases. However, its therapeutic efficacy is imperiled due to its poor solubility and stability. Latter was surmounted by its incorporation into a solid matrix of lipidic nanoparticles (SLNs). Methods:: ATRA loaded SLNs (ATRA-SLNs) were prepared using a novel microemulsification technique (USPTO 9907758) and an optimal composition and were characterized in terms of morphology, differential scanning calorimetry (DSC), and powder X-ray diffraction studies (PXRD). In vitro release, oral plasma pharmacokinetics (in rats) and stability studies were also done. Results:: Rod-shaped ATRA-SLNs could successfully incorporate 3.7 mg/mL of ATRA, increasing its solubility (from 4.7 μg/mL) by 787 times, having an average particle size of 131.30 ± 5.0 nm and polydispersibility of 0.283. PXRD, DSC, and FTIR studies confirmed the formation of SLNs. Assay/total drug content and entrapment efficiency of ATRA-SLNs was 92.50 ± 2.10% and 84.60 ± 3.20% (n=6), respectively, which was maintained even on storage for one year under refrigerated conditions as an aqueous dispersion. In vitro release in 0.01 M phosphate buffer (pH 7.4) with 3% tween 80 was extended 12 times from 2h for free ATRA to 24 h for ATRA-SLNs depicting Korsmeyer Peppas release. Oral administration in rats showed 35.03 times enhanced bioavailability for ATRA-SLNs. Conclusion:: Present work reports preparation and evaluation of bioenhanced ATRA-SLNs containing a high concentration of ATRA (>15 times than that reported by others). Latter is attributed to the novel preparation process and intelligent selection of components. Lay Summary: All-trans retinoic acid (ATRA) shows an array of pharmacological activities but its efficacy is limited due to poor solubility, stability and side effects. In present study its solubility and efficacy is improved by 787 and 35.5 times, respectively upon incorporation into solid lipid nanoparticles (ATRA-SLNs). Latter extended its release by 12 times and provided stability for at least a year under refrigeration. A controlled and sustained release will reduce dose related side effects. ATRA-SLNs reported presently can thus be used in treatment /prophylaxis of disorders like cancers, tuberculosis, age related macular degeneration and acne and as an immune-booster.


2021 ◽  
Vol 14 (8) ◽  
pp. 711
Author(s):  
Cláudia Pina Costa ◽  
Sandra Barreiro ◽  
João Nuno Moreira ◽  
Renata Silva ◽  
Hugo Almeida ◽  
...  

The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood−brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and gliomas. Herein, the state of the art of the most recent literature available on in vitro studies with nasal formulations of lipid nanoparticles is discussed. Specific in vitro cell culture models are needed to assess the cytotoxicity of nasal formulations and to explore the underlying mechanism(s) of drug transport and absorption across the nasal mucosa. In addition, different studies with 3D nasal casts are reported, showing their ability to predict the drug deposition in the nasal cavity and evaluating the factors that interfere in this process, such as nasal cavity area, type of administration device and angle of application, inspiratory flow, presence of mucoadhesive agents, among others. Notwithstanding, they do not preclude the use of confirmatory in vivo studies, a significant impact on the 3R (replacement, reduction and refinement) principle within the scope of animal experiments is expected. The use of 3D nasal casts to test nasal formulations of lipid nanoparticles is still totally unexplored, to the authors best knowledge, thus constituting a wide open field of research.


2021 ◽  
Author(s):  
Burcu Üner ◽  
Samet Özdemir ◽  
Çetin Taş ◽  
Yıldız Özsoy ◽  
Melike Üner

Abstract Purpose Loteprednol etabonate (LE) is a new generation corticosteroid that is used for the treatment of inflammatory and allergic conditions of the eye, and management of seasonal allergic rhinitis nasally. LE which is a poorly soluble drug with insufficient bioavailability, has a high binding affinity to steroid receptors. Sophisticated colloidal drug delivery systems of LE could present an alternative for treatment of inflammatory and allergic conditions of the skin. For this purpose, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were attempted to improve for transdermal LE delivery for the first time. Methods SLN and NLC were produced by hot homogenization and ultrasonication technique. Formulations were characterized by dynamic light scattering, scanning electron microscopy, fourier transform infrared spectroscopy and differential scanning calorimetry. Their physical stability was monitored for 3 months of storage. Drug release profiles and permeation properties of SLN and NLC through the porcine skin were investigated. Results It was determined that SLN and NLC below 150 nm particle size had a homogeneous particle size distribution as well as high drug loading capacities. They were found to be stable both physically and chemically at room temperature for 90 days. In terms of release kinetics, it was determined that they released from SLN and NLC in accordance with Fickian diffusion release. Formulations prepared in this study were seen to significantly increase drug penetration through pig skin compared to the control group (p ≤ 0.05). Conclusion SLN and NLC formulations of LE can be stated among the systems that can be an alternative to conventional systems with less side-effect profile in the treatment of inflammatory problems on the skin.


Sign in / Sign up

Export Citation Format

Share Document