scholarly journals Determining amplitude and tilt of a lateral force microscopy sensor

2021 ◽  
Vol 12 ◽  
pp. 517-524
Author(s):  
Oliver Gretz ◽  
Alfred J Weymouth ◽  
Thomas Holzmann ◽  
Korbinian Pürckhauer ◽  
Franz J Giessibl

In lateral force microscopy (LFM), implemented as frequency-modulation atomic force microscopy, the tip oscillates parallel to the surface. Existing amplitude calibration methods are not applicable for mechanically excited LFM sensors at low temperature. Moreover, a slight angular offset of the oscillation direction (tilt) has a significant influence on the acquired data. To determine the amplitude and tilt we make use of the scanning tunneling microscopy (STM) channel and acquire data without and with oscillation of the tip above a local surface feature. We use a full two-dimensional current map of the STM data without oscillation to simulate data for a given amplitude and tilt. Finally, the amplitude and tilt are determined by fitting the simulation output to the data with oscillation.

2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


1993 ◽  
Vol 32 (Part 1, No. 12B) ◽  
pp. 6200-9202 ◽  
Author(s):  
Katsuhiro Uesugi ◽  
Takaharu Takiguchi ◽  
Michiyoshi Izawa ◽  
Masamichi Yoshimura ◽  
Takafumi Yao

1997 ◽  
Vol 12 (8) ◽  
pp. 1942-1945 ◽  
Author(s):  
H. J. Gao ◽  
H. X. Zhang ◽  
Z. Q. Xue ◽  
S. J. Pang

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigation of tetracyanoquinodimethane (TCNQ) and the related C60-TCNQ thin films is presented. Periodic molecular chains of the TCNQ on highly oriented pyrolytic graphite (HOPG) substrates were imaged, which demonstrated that the crystalline (001) plane was parallel to the substrate. For the C60-TCNQ thin films, we found that there were grains on the film surface. STM images within the grain revealed that the well-ordered rows and terraces, and the parallel rows in different grains were generally not in the same orientation. Moreover, the grain boundary was also observed. In addition, AFM was employed to modify the organic TCNQ film surface for the application of this type of materials to information recording and storage at the nanometer scale. The nanometer holes were successfully created on the TCNQ thin film by the AFM.


Nanoscale ◽  
2021 ◽  
Author(s):  
Nan Cao ◽  
Alexander Riss ◽  
Eduardo Corral-Rascon ◽  
Alina Meindl ◽  
Willi Auwärter ◽  
...  

Porphyrin-based oligomers were synthesized from the condensation of adsorbed 4-benzaldehyde-substituted porphyrins through the formation of C=C linkages, following a McMurry-type coupling scheme. Scanning tunneling microscopy, non-contact atomic force microscopy, and...


Sign in / Sign up

Export Citation Format

Share Document