scholarly journals Characterization of the mechanical properties of qPlus sensors

2013 ◽  
Vol 4 ◽  
pp. 1-9 ◽  
Author(s):  
Jan Berger ◽  
Martin Švec ◽  
Martin Müller ◽  
Martin Ledinský ◽  
Antonín Fejfar ◽  
...  

In this paper we present a comparison of three different methods that can be used for estimating the stiffness of qPlus sensors. The first method is based on continuum theory of elasticity. The second (Cleveland’s method) uses the change in the eigenfrequency that is induced by the loading of small masses. Finally, the stiffness is obtained by analysis of the thermal noise spectrum. We show that all three methods give very similar results. Surprisingly, neither the gold wire nor the gluing give rise to significant changes of the stiffness in the case of our home-built sensors. Furthermore we describe a fast and cost-effective way to perform Cleveland’s method. This method is based on gluing small pieces of a tungsten wire; the mass is obtained from the volume of the wire, which is measured by optical microscopy. To facilitate detection of oscillation eigenfrequencies under ambient conditions, we designed and built a device for testing qPlus sensors.

2007 ◽  
Vol 539-543 ◽  
pp. 763-768 ◽  
Author(s):  
M. García de Cortázar ◽  
Javier Goñi ◽  
J. Coleto ◽  
I. Agote ◽  
P. Egizabal ◽  
...  

A new cost effective process to produce discontinuously reinforced (TiB) TMCs has been developed. The article presents general features of the composites, microstructural characteristics and mechanical properties. The production and characterization of two potential commercial applications are also discussed.


2021 ◽  
Vol 7 (2) ◽  
pp. 79-85
Author(s):  
Adriana Yazik ◽  
Nur Azira Tukiran

Packaging is a critical process in the food industry because it is used to prevent spoilage, extend shelf-life, and provide an attractive presentation of the food product. Plastic packaging is used all over the world, and its production is increasing year after year. It comes in a variety of colours and designs. However, it has caused serious environmental problems, particularly to the ocean that has become a place for discarded plastic packaging. To address this issue, biodegradable packaging was developed to replace the use of plastic packaging because it helps to reduce environmental impact and waste management costs. Biodegradable packaging is also known as environmentally friendly packaging because it can be degraded into carbon dioxide, water, inorganic compounds, and biomass by microorganisms, algae, fungi, as well as enzyme catalysts. Biodegradable biocomposite film such as starch, cellulose, chitosan, and polyvinyl alcohol (PVA) is required to produce biodegradable packaging. Therefore, this paper aims to characterize PVA as a biocomposite film in biodegradable packaging. PVA has excellent properties to form films, as well as biodegradable, abundant in the environment, and cost-effective. However, it has some limitations in terms of thickness and mechanical properties; thus, the incorporation of PVA with essential oils and fiber is required to improve its mechanical properties, thickness, and provide antimicrobial properties to the packaging. 


2004 ◽  
Vol 126 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Mithilesh Shah ◽  
Kaiyang Zeng ◽  
Andrew A. O. Tay

The present work studies the mechanical properties of mechanically polished gold wire and wirebond using nanoindentation. Metallography of wirebond reveals undesirable coarse grain structure in HAZ due to recrystallization and grain growth. For our gold wire, the recrystallization temperature found using D.S.C. was 340.66°C and the dopants were identified using TOF-SIMS and hardness dependence on load was studied using nanoindentation. The nanoindentation of wirebond has confirmed a v-shaped hardness profile with minima at 166 μm along the HAZ. The elastic modulus varied independent of the microstructure. A yield stress profile based on empirical hardness-yield strength correlation is predicted for the wirebond.


2019 ◽  
Vol 35 (4) ◽  
pp. 173-187
Author(s):  
D Hermawan ◽  
Che Mohamad Hazwan ◽  
FAT Owolabi ◽  
Deepu A Gopakumar ◽  
M Hasan ◽  
...  

The forestry and agricultural market have been perceiving outstanding growth due to the advantages of green composites, such as cost effective in nature, environment friendly, excellent mechanical properties, and so on. Various researchers had studied the reinforcement efficiency of various natural fibers in the diverse polymer matrices. Herein, we reported the characterization of microfiber handsheet-molded thermoplastic green composites developed from the combination of oil palm empty fruit bunch (OPEFB)-based microfiber pulp as filler and polyester PP based as matrix. Refined alkaline extracted OPEFB pulp fiber was mixed at different layered composition of the composite of grafted polypropylene. The physical properties and mechanical properties were conducted according to the ASTM standard and showed substantial improvement of the handsheet-molded composite. The scanning electron microgram showed that, as the addition of OPEFB fiber loading increased, there was improved interfacial bonding except for 50% fiber loading which experience fiber pullout. The result also showed improved thermal stability compared with the neat composite. This study will be an effective platform to develop the packaging materials using polymer handsheet composite. [Formula: see text]


2021 ◽  
Vol 27 (1) ◽  
pp. 27-31
Author(s):  
Zhixiong ZHANG ◽  
Ruirui WU ◽  
Jie HOU ◽  
Tao WANG

A cost-effective approach which consists of cyclic heat treatment (CHT) and annealing is used to refine the coarse lamellar structure of as-cast Ti-6Al-4V alloy. The coarse lamellar microstructure was significantly refined after the CHT process, α lamellae were broken up while the original orientations of α lamellae were maintained. After annealing treatment, a basketweave microstructure was achieved in Ti-6Al-4V alloy, and the formation of globular α grains was observed. The microstructure refinement mechanisms during CHT and annealing are mainly considered to be break-up of lamellar structure and static recrystallization. The room temperature mechanical properties of Ti-6Al-4V alloy were significantly improved. The microhardness of Ti-6Al-4V alloy increased from 306 HV to 402 HV. The values of yield strength (YS) and ultimate tensile strength (UTS) increased from 734 MPa and 740 MPa to 911 MPa and 1010 MPa, respectively. The value of ductility increased from 1.1 % to 3.3 %.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Seung Zeon Han ◽  
Joonhee Kang ◽  
Sung-Dae Kim ◽  
Si-Young Choi ◽  
Hyung Giun Kim ◽  
...  

Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Sign in / Sign up

Export Citation Format

Share Document