scholarly journals Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

2017 ◽  
Vol 8 ◽  
pp. 348-357 ◽  
Author(s):  
Ana I Ramos ◽  
Pedro D Vaz ◽  
Susana S Braga ◽  
Artur M S Silva

Background: Aescin, a natural mixture of saponins occurring in Aesculus hippocastanum, exhibits important flebotonic properties, being used in the treatment of chronic venous insufficiency in legs. The inclusion of aescin into cyclodextrins (CDs) is a technical solution for its incorporation into the textile of stockings, but details of the physicochemistry of these host–guest systems are lacking. This work investigates the inclusion of aescin into the cavities of two native cyclodextrins, β-CD and γ-CD. Results: The continuous variation method applied to aqueous-phase 1H nuclear magnetic resonance (1H NMR) has demonstrated that the preferred CD/aescin inclusion stoichiometries are 2:1 with β-CD and 1:1 with γ-CD. The affinity constant calculated for γ-CD·aescin was 894 M−1, while for 2β-CD·aescin it was estimated to be 715 M−1. Density functional theory (DFT) calculations on the interaction of aescin Ib with CDs show that an inclusion can indeed occur and it is further demonstrated that the wider cavity of γ-CD is more adequate to accommodate this large guest. ROESY spectroscopy is consistent with the formation of a complex in which the triterpenic moiety of aescin is included into the cavity of γ-CD. The higher stability of this geometry was confirmed by DFT. Furthermore, DFT calculations were applied to determine the chemical shifts of the protons H3 and H5 of the CDs in the optimised structures of the inclusion complexes. The calculated values are very similar to the experimental data, validating the approach made in this study by NMR. Conclusion: The combination of experimental data from aqueous-state NMR measurements and theoretical calculations has demonstrated that γ-CD is the most suitable host for aescin, although the inclusion also occurs with β-CD. The geometry of the γ-CD·aescin complex is characterised by the inclusion of the triterpene segment of aescin into the host cavity.

2005 ◽  
Vol 60 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Oleg L. Tok

Trimethylborane (1), triethylborane (2), 1,3-dimethyl-1-boracyclopentane (3), 1-methyl-1- boracyclohexane (4), 9-methyl- and 9-ethyl-9-borabicyclo[3.1.1]nonane [5(Me) and 5(Et)], and 1- boraadamantane (6) were studied by 11B and 13C NMR spectroscopy with respect to coupling constants 1J(13C,11B) and 1J(13C,13C). Results of DFT calculations at the B3LYP/6-311+g(d,p) level of theory show satisfactory agreement with the experimental data. Hyperconjugation arising from C-C σ bonds adjacent to the tricoordinate boron atom is indicated, in particular for 1-boraadamantane (6), by the optimised calculated structures, and by the experimental and calculated data 1J(13C,13C). The calculated magnitude of 1J(13C,1H) for carbon atoms adjacent to boron becomes significantly smaller if the optimised structures suggest hyperconjugative effects arising from these C-H bonds


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Najet Aouled Dlala ◽  
Younes Bouazizi ◽  
Houcine Ghalla ◽  
Naceur Hamdi

Chromenes and their derivatives have been considered as an important class of oxygen-containing heterocycles. There has been an increasing interest in the study of chromenes due to their biological activity. Herein, the structural, electronic, and vibrational properties of a chromene derivative, entitled 2‐amino‐5‐oxo‐4‐phenyl‐4,5‐dihydropyrano[3,2‐c]chromene‐3‐carbonitrile and abbreviated as Chrom-D, have been reported. The FT-IR, UV-vis, and 1H-NMR and 13C-NMR chemical shifts’ measurements were recorded. The molecular geometry and the vibrational frequencies are computed in the frame of density functional theory at the B3LYP/6-311++G(d,p) level of theory. The noncovalent interactions in the crystal lattice which are responsible to the 3D crystal structure of Chrom-D are investigated based on Hirshfeld surfaces and topological reduced density gradient (RDG) analysis. Molecular electrostatic potential surface, Mulliken charges, and Fukui functions are computed in order to find out the electrophilic and nucleophilic sites. The electronic properties of the title compound have been studied based on the TD-DFT calculations. Finally, Chrom-D has been evaluated as a multifunctional agent against Alzheimer’s disease (AD).


2020 ◽  
Author(s):  
Ana Carolina Ferreira de Albuquerque ◽  
José Walkimar de Mesquita Carneiro ◽  
Fernando Martins dos Santos Junior

The properties of natural products, including their biological and pharmacological activities, are directly correlated with their chemical structures. Thus, a correct structural characterization of these compounds is a crucial step to the understanding of their biological activities. However, despite the recent advances in spectroscopic techniques, structural studies of natural products can be challenging. This way, theoretical calculations of Nuclear Magnetic Resonance (NMR) parameters (such as chemical shifts and coupling constants) have proven to be a powerful and low-cost tool for the aid to experimental techniques traditionally used for the structural characterization of natural products. One of the several applications of quantum-mechanical calculations of NMR parameters is the study of tautomerism. Since chemical shifts are sensitive to the tautomeric equilibrium, this technique can provide crucial informations. In this work, it was applied a protocol for theoretical calculations of ¹³C chemical shifts in order to study the tautomerism of the natural product 7-epi-clusianone, isolated from Rheedia gardneriana. This protocol consists in a Monte Carlo conformational search, followed by geometry optimization and shielding tensors calculations, both using a density functional level of theory. After comparison of theoretical and experimental data, it was possible to confirm the two tautomers present in equilibrium in the experimental solution. Furthermore, this study highlights how this theoretical protocol can be an effective method in identifying the preferred tautomeric form in solution.


2021 ◽  
Author(s):  
Peng Gao ◽  
Jie Zhang ◽  
Hongbo Qiu ◽  
Shuaifei Zhao

In this study, a general quantitative structure-property relationship (QSPR) protocol, fragments based graph convolutional neural network (F-GCN), was developed for atomic and inter-atomic properties predictions. We applied this novel artificial intelligence (AI) tool in NMR chemical shifts and bond dissociation energies (BDEs) predictions. The predicted results were comparable to experimental measurement, while the computational cost was substantially reduced, with respect to pure density functional theory (DFT) calculations. The two important features of F-GCN can be summarised as: first, it could utilise different levels of molecular fragments centered at the target chemical bonds for atomic and inter-atomic information extraction; second, the designed architecture is also open to include additional descriptors for more accurate solution of chemical environment, making itself more efficient for local properties descriptions. And during our test, the averaged prediction error of <sup>1</sup>H NMR chemical shifts can be as small as 0.32 ppm; and the error of C-H BDEs estimations, is 2.7 kcal/mol. Moreover, we further demonstrated the applicability of this developed F-GCN model via several challenging structural assignments. The success of the F-GCN in atomic and inter-atomic predictions also indicates an essential improvement of computational chemistry with the assistance of AI tools.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Forozan Piryaei ◽  
Nahid Shajari ◽  
Hooriye Yahyaei

The synthesis of 1H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione derivatives, using one-pot three-component condensation reaction of 3-nitrophthalic anhydride, hydrazine monohydrate, dimedone, and aromatic aldehydes in the presence of ZrO(NO3)2.2H2O as the novel catalyst and in reflux conditions in EtOH was reported. Quantum theoretical calculations for three structures of compounds (5a, 5b, and 5c) were performed using the Hartree–Fock (HF) and density functional theory (DFT). From the optimized structure, geometric parameters were obtained and experimental measurements were compared with the calculated data. The structures of the products were confirmed by IR, 1H NMR, 13C NMR, mass spectra, and elemental analyses. The IR spectra data and 1H NMR and 13C NMR chemical shift computations of the 1H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione derivatives in the ground state were calculated. Frontier molecular orbitals (FMOs), total density of states (DOS), thermodynamic parameters, and molecular electrostatic potential (MEP) of the title compounds were investigated by theoretical calculations. Molecular properties such as the ionization potential (I), electron affinity (A), chemical hardness (η), electronic chemical potential (µ), and electrophilicity (ω) were investigated for the structures. Thus, there was an excellent agreement between experimental and theoretical results.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550024 ◽  
Author(s):  
Ying-Chun Ding ◽  
Min Chen ◽  
Wen-Juan Wu

The structural stability and mechanical and thermodynamic properties of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) are calculated by first-principles calculations based on the density functional theory. The calculated lattice parameters and elastic constants of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) are in good agreement with the experimental data and previously calculated values. WII- A 3 N 4 ( A=C , Si , Ge and Sn ) compounds are also found to be thermodynamically and mechanically stable. The results suggest that hardness of WII- C 3 N 4 is the hardest of these C 3 N 4 polymorphs. The hardness of WII- Sn 3 N 4 is the smallest among WII- A 3 N 4 ( A=C , Si , Ge and Sn ). Furthermore, the mechanical anisotropy, Debye temperature, the minimum thermal conductivity and thermodynamic properties of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) compounds can be investigated.


2016 ◽  
Vol 20 (05) ◽  
pp. 647-655 ◽  
Author(s):  
Li Xu ◽  
Tingting Huang ◽  
Xu Liang ◽  
John Mack ◽  
Jessica Harris ◽  
...  

An in-depth study of the electronic structure of a 1,4-diazabicyclo[2.2.2]octane (DABCO) induced molecular self-assembled xanthene-bridged and amide-bonded porphyrin dimer is reported. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are used to identify trends in the optical spectroscopic properties. B3LYP geometry optimization predicts the formation of an almost perfectly eclipsed structure with respect to the two porphyrin rings with the analogous pyrrole nitrogens separated by 7.7–8.1 Å. The observed distinctive derivative-shaped band morphology of the pseudo-Faraday-A[Formula: see text] terms in the MCD spectra has been used to identify the main electronic Q and B-bands and to validate the TD-DFT calculations. The absence of a discernible splitting of the redox steps or a quenching of the fluorescence demonstrates that there is no significant exciton coupling between the two porphyrin rings.


2017 ◽  
Vol 15 (21) ◽  
pp. 4655-4666 ◽  
Author(s):  
Michael G. Siskos ◽  
M. Iqbal Choudhary ◽  
Ioannis P. Gerothanassis

High resolution structures of hydrogen bonds: experimental (δexp) and GIAO calculated 1H NMR chemical shifts, δcalc, in combination with DFT energy minimization, are an excellent means for obtaining high resolution structures of labile protons.


2011 ◽  
Vol 391-392 ◽  
pp. 1368-1374 ◽  
Author(s):  
Zheng Ping Wu ◽  
Yuan Bing Sun ◽  
Ian S. Butler

Dibenzyl sulfoxide [C6H5CH2)2SO, DBzSO] has been studied using density functional theory (DFT) methods with a particular emphasis on the theoretical 1H-NMR spectra of the methylene protons. The 1H-NMR chemical shifts of the methylene protons of DBzSO can be divided into two main types. Four possible structures of DBzSO were considered and the total energies were calculated for both a vacuum and in CDCl3 solvent. The change of length of S-O and S-C bonds in solvent was more obvious than that of the C(CH2)-C(C6H5) bonds; The S-O bond was longer and S-C bond was shorter in CDCl3. The essence effect of solvent on the properties of dibenzyl sulfoxide should come from the change of the geometrical structure. The change of shift Δx, [shift (solvent) - shift (vacuum)] showed that the effect of solvent on methylene protons of dibenzyl sulfoxide was apparent. Except of the other H of the rings, the two ortho H which were near S-O bond appeared more sensitivity on the solvent. The optimized structures in CDCl3 were in good agreement with the experimental data. The NMR peaks of methylene protons should be split more apparently in actual circumstance and the complex split of CH2 1HNMR peaks should be explained in some degree.


Sign in / Sign up

Export Citation Format

Share Document