scholarly journals Estudo do tautomerismo ceto-enólico da 7-epi-clusianona através de cálculos teóricos de deslocamentos químicos de RMN

Author(s):  
Ana Carolina Ferreira de Albuquerque ◽  
José Walkimar de Mesquita Carneiro ◽  
Fernando Martins dos Santos Junior

The properties of natural products, including their biological and pharmacological activities, are directly correlated with their chemical structures. Thus, a correct structural characterization of these compounds is a crucial step to the understanding of their biological activities. However, despite the recent advances in spectroscopic techniques, structural studies of natural products can be challenging. This way, theoretical calculations of Nuclear Magnetic Resonance (NMR) parameters (such as chemical shifts and coupling constants) have proven to be a powerful and low-cost tool for the aid to experimental techniques traditionally used for the structural characterization of natural products. One of the several applications of quantum-mechanical calculations of NMR parameters is the study of tautomerism. Since chemical shifts are sensitive to the tautomeric equilibrium, this technique can provide crucial informations. In this work, it was applied a protocol for theoretical calculations of ¹³C chemical shifts in order to study the tautomerism of the natural product 7-epi-clusianone, isolated from Rheedia gardneriana. This protocol consists in a Monte Carlo conformational search, followed by geometry optimization and shielding tensors calculations, both using a density functional level of theory. After comparison of theoretical and experimental data, it was possible to confirm the two tautomers present in equilibrium in the experimental solution. Furthermore, this study highlights how this theoretical protocol can be an effective method in identifying the preferred tautomeric form in solution.

Author(s):  
Fabio Luiz Paranhos Costa ◽  
Ana Carolina Ferreira de Albuquerque ◽  
Rodolfo Goetze Fiorot ◽  
Luciano Morais Lião ◽  
Lucas Haidar Martorano ◽  
...  

The calculation of NMR parameters for natural products was pioneered by Bifulco and coworkers in 2002. Since then, modelling 1H and 13C chemical shifts and spin-spin coupling constants for this...


2011 ◽  
Vol 89 (7) ◽  
pp. 814-821 ◽  
Author(s):  
Boris Le Guennic ◽  
Jochen Autschbach

We report computations of NMR chemical shifts and indirect spin-spin coupling constants (J couplings) for the [Pt@Pb12]2– “superatom”. The system is strongly influenced by relativistic effects. The Pt–Pb coupling constant is predicted to be negative, with its magnitude being in reasonable agreement with experiment. Pt and Pb chemical shifts also agree reasonably well with experiment. The Pb shielding tensor is strongly anisotropic, with a large deshielding principal component dominated by magnetic coupling between frontier orbitals of the cluster that resemble atomic g orbitals. The NMR parameters are sensitive to approximations made in the computations and require the inclusion of spin-orbit coupling in the theoretical model to achieve reliable results. Computing the NMR parameters of the compact [Pt@Pb12]2– system with its many electrons proves to be a challenging test case for relativistic density functional methods.


2021 ◽  
Vol 28 ◽  
Author(s):  
Francisco Javier Cañada ◽  
Ángeles Canales ◽  
Pablo Valverde ◽  
Beatriz Fernández de Toro ◽  
Mónica Martínez-Orts ◽  
...  

: Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in many essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C boosts the resolution and detail that analyzed glycan structures can reach. In turn, structural information derived from NMR, complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional long-range observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3931 ◽  
Author(s):  
Kacper Rzepiela ◽  
Aneta Buczek ◽  
Teobald Kupka ◽  
Małgorzata A. Broda

We report on the density functional theory (DFT) modelling of structural, energetic and NMR parameters of uracil and its derivatives (5-halogenouracil (5XU), X = F, Cl, Br and I) in vacuum and in water using the polarizable continuum model (PCM) and the solvent model density (SMD) approach. On the basis of the obtained results, we conclude that the intramolecular electrostatic interactions are the main factors governing the stability of the six tautomeric forms of uracil and 5XU. Two indices of aromaticity, the harmonic oscillator model of aromaticity (HOMA), satisfying the geometric criterion, and the nuclear independent chemical shift (NICS), were applied to evaluate the aromaticity of uracil and its derivatives in the gas phase and water. The values of these parameters showed that the most stable tautomer is the least aromatic. A good performance of newly designed xOPBE density functional in combination with both large aug-cc-pVQZ and small STO(1M)−3G basis sets for predicting chemical shifts of uracil and 5-fluorouracil in vacuum and water was observed. As a practical alternative for calculating the chemical shifts of challenging heterocyclic compounds, we also propose B3LYP calculations with small STO(1M)−3G basis set. The indirect spin–spin coupling constants predicted by B3LYP/aug-cc-pVQZ(mixed) method reproduce the experimental data for uracil and 5-fluorouracil well.


2004 ◽  
Vol 59 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Bernd Wrackmeyer

Abstract Singlet state structures of small, cyclic hydrocarbons which can result from the addition of molecular dicarbon (C2) to ethyne (HC≡CH) or ethene (H2C=CH2) have been calculated (B3LYP/6- 311+G(d,p) level of theory), and were found to contain carbene centres. Some structures of analogous boranes (replacement of the carbene centers by BH fragments) were also calculated. The computation of NMR parameters such as chemical shifts δ 13C and δ 11B, and coupling constants 1J(13C,1H), 1J(11B,1H), J(13C,13C) and J(13C,11B) shows that these data can be used for the discussion of the bonding situation. The presence of inverted carbene centers is clearly indicated by the increased 13C nuclear magnetic shielding. Scalar 13C-13C spin-spin coupling involving carbene centers are frequently dominated by spin-dipole and spin-orbital interactions.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3763
Author(s):  
Poul Erik Hansen

This review outlines methods to investigate the structure of natural products with emphasis on intramolecular hydrogen bonding, tautomerism and ionic structures using NMR techniques. The focus is on 1H chemical shifts, isotope effects on chemical shifts and diffusion ordered spectroscopy. In addition, density functional theory calculations are performed to support NMR results. The review demonstrates how hydrogen bonding may lead to specific structures and how chemical equilibria, as well as tautomeric equilibria and ionic structures, can be detected. All these features are important for biological activity and a prerequisite for correct docking experiments and future use as drugs.


2004 ◽  
Vol 59 (6) ◽  
pp. 685-691 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Hans-Jörg Schanz

Deprotonation of hexaethyl-2,4-dicarba-nido-borane(8) 2 leads first to the hexaethyl-2,4-dicarbanido- borate(1−) 3, and further deprotonation, using BuLi/KOtBu, gives the hexaethyl-2,4-dicarbanido- hexaborate(2−) 4. The reaction of 3 with FeCl2 affords the commo-ferracarborane [Fe(Et6-2,4- C2B4H)2] 5, and the analogous reaction of 4 leads to the anionic sandwich complex [Fe(Et6-2,4- C2B4)2]2− 6 which can be protonated to give 5. The complex 5 contains two hydrido ligands, each bridging the iron and two boron atoms. Reactions were monitored and the products were characterised by 11B NMR spectroscopy in solution. The geometries of the carboranes, the borates (all unsubstituted and permethyl-substituted) and the iron complexes (all unsubstituted) were optimised by DFT methods [B3LYP/6-311+G(d,p) or B3LYP/6-31+G(d)], and the relevant NMR data [chemical shifts δ11B, δ13C, δ57Fe, and coupling constants 1J(13C,1H), 1J(11B,1H), 1J(57Fe,1H), 1J(57Fe,11B)] were calculated at the same level of theory.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4191 ◽  
Author(s):  
Agnieszka Gonciarz ◽  
Robert Pich ◽  
Krzysztof Artur Bogdanowicz ◽  
Beata Jewloszewicz ◽  
Wojciech Przybył ◽  
...  

In this paper, four new aromatic imines containing at least one thiazole-based heterocycle were analyzed in detail by UV–Vis spectroscopy, taking into consideration their chemical structures and interactions with PTB7, a known polymeric electron donor widely used in bulk heterojunction organic solar cells. It is demonstrated that the absorption spectra of the investigated active compositions can be modified not only by changing the chemical structure of imine, but also via formulations with PTB7. For all investigated imines and PTB7:imine compositions, calibration curves were obtained in order to find the optimum concentration in the composition with PTB7 for expansion and optimization of absorption spectra. All imines and PTB7:imine compositions were investigated in 1,2-dichlorobenzene by UV–Vis spectroscopy in various concentrations, monitoring the changes in the π–π* and n–π* transitions. With increasing imine concentrations, we did not observe changes in absorption maxima, while with increasing imine concentrations, a hypochromic effect was observed. Finally, we could conclude that all investigated compositions exhibited wide absorptions of up to 800 nm and isosbestic points in the range of 440–540 nm, confirming changes in the macromolecular organization of the tested compounds. The theoretical calculations of their vibration spectra (FTIR) and LUMO–HOMO levels by Density Functional Theory (DFT) methods are also provided. Finally, IR thermal images were measured for organic devices based on imines and the imine:PTB7 composite.


Sign in / Sign up

Export Citation Format

Share Document