scholarly journals Improving the reactivity of phenylacetylene macrocycles toward topochemical polymerization by side chains modification

2014 ◽  
Vol 10 ◽  
pp. 1613-1619 ◽  
Author(s):  
Simon Rondeau-Gagné ◽  
Jules Roméo Néabo ◽  
Maxime Daigle ◽  
Katy Cantin ◽  
Jean-François Morin

The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM).

2004 ◽  
Vol 836 ◽  
Author(s):  
S. L. Wang ◽  
S. H. Lee ◽  
A. Gupta ◽  
A. D. Compaan

ABSTRACTCd1-xMnxTe alloy films with band gaps of 1.6 ∼ 1.8 eV have been deposited by RF magnetron sputtering for solar-cell applications. The films have been treated by chloride vapors to improve the photovoltaic performance. These as-deposited and chloride-treated CdMnTe films have been investigated by Raman spectroscopy, x-ray diffraction (XRD) and scanning electron microscopy (SEM). Raman results indicate that Te and/or TeO2 exists in the annealed samples depending on anneal conditions.


2012 ◽  
Vol 27 (2) ◽  
pp. 131-136
Author(s):  
Bozidar Cekic ◽  
Valentin Ivanovski ◽  
Aleksandar Djordjevic ◽  
Velimir Aleksic ◽  
Zorica Tomic ◽  
...  

The paper addresses the issue of health risk associated with the presence of chrysotile in the soil type ranker formed on massive serpentines occurring in the area of Bubanj Potok, a settlement located in the southern Belgrade environs, Serbia. Characterization of the ranker soil was conducted by scanning electron microscopy, X-ray diffraction, micro-Raman spectroscopy and transmission 57Fe M?ssbauer spectroscopy. Scanning electron microscopy figures showed regular shaped smectite (montmorillonite) particles, aggregates of chlorite, and elongated sheets of serpentines minerals antigorite. X-ray diffraction analysis confirmed the presence of detrital mineral quartz polymorph as well as minor amounts of other mineral species. Micro-Raman spectroscopy identified the presence of dominant minerals, such as montmorillonite, kaolinite, muscovite, gypsum, calcite, albite, amphiboles (hornblende/kaersutite) and orthoclase. Important polymorph silica modifications of quartz, olivine (forsterite), pyroxene (enstatite/ferrosilite, diopside/hedenbergite), and serpentine (antigorite/lizardite/chrysotile) were identified.


2016 ◽  
Vol 16 (4) ◽  
pp. 3617-3621 ◽  
Author(s):  
Yuping Wang ◽  
Mingxia Li ◽  
Kai Pan ◽  
Rong Li ◽  
Naiying Fan ◽  
...  

Rhombic NaLa(MoO4)2:Ln3+ (Ln = Eu and Tb) nanocrystals were synthesized by a hydrothermal method. The structures and morphologies of the nanocrystals were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The results indicated that the crystalline size increased with increasing Na2MoO4 content. The photoluminescence properties of NaLa(MoO4)2:Ln3+ nanocrystals were investigated in detail. In the emission spectra of NaLa(MoO4)2:Eu3+ nanocrystals, the 5D0 → 7F2 is dominant, and the peak positions and spectral shapes of emissions were independent of Eu3+ concentration. The luminescence intensity increased with increasing Eu3+ concentration, up to about 10 mol%, and then decreased. In the emission spectra of NaLa(MoO4)2:Tb3+ nanocrystals, the 5D4 → 7F5 is dominant. The sample with a dopant concentration of 20 mol% showed the highest emission intensity.


2014 ◽  
Vol 602-603 ◽  
pp. 463-466 ◽  
Author(s):  
Jin Jia ◽  
Yuan Yuan Zhu ◽  
Ya Fei Zhang ◽  
Ruo Yu Chen ◽  
Bao Lin Xing ◽  
...  

Carbide-derived carbons (CDCs) are produced from carbides by removing non-carbon elements in the process of selective etching. In this paper, CDC was prepared from TiC by chlorination at the temperature range of 600~1100°C. In the chlorinating process, carbide-derived carbon with different microstructure was obtained by controlling the reaction temperature. The structures of CDC were revealed with X-ray diffraction and Raman spectroscopy. The morphologies of CDC were analyzed by scanning electron microscope. From X-ray diffraction analysis, the CDC obtained from TiC in this experiment mainly consisted of amorphous carbon. Basing on scanning electron microscopy, carbide-derived carbon from TiC maintained the shape and size of TiC particles. Keywords: Carbide-derived carbons; chlorination; TiC


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2557
Author(s):  
Chloé Cherpin ◽  
Derek Lister ◽  
Frédéric Dacquait ◽  
Lihui Liu

Spinel ferrite compounds continue to receive a lot of attention due to their unique properties. Among the numerous synthesis routes existing, the solid-state method was applied for the production of nickel ferrite, by introducing the use of a quartz vial. A mixture of nickel oxide (NiO) and hematite (Fe2O3) was ground and vacuum-sealed in the vial and different thermal treatment programs were tested. The resulting particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. For temperatures, below 1000 °C, the solid-state reaction is not complete as nickel oxide (NiO) and hematite (Fe2O3) are still present. The reaction time is a decisive parameter for the morphology of the particles obtained. If, for different reaction times, the particle size distribution is always between 0.3 and 1.7 µm, a longer reaction time leads to the formation of dense, interconnected clusters of particles. Optimal parameters to synthesize a pure phase of spherical nickel ferrite were sought and found to be a reaction temperature of 1000 °C for 72 h.


2013 ◽  
Vol 300-301 ◽  
pp. 1385-1388
Author(s):  
Fei Lu

In the present article, we obtained uniform and rather flat melanin films with the dendrites structure using self-assembly technique on Si substrate. The structure of film was confirmed by Fourier-transformed infrared spectrometry (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Experimental results showed that the grown on the Si substrate, self-assembly film had oriented quality. Furthermore, according to the results, a model of the secondary structure in the melanin films was also proposed.


Cerâmica ◽  
2016 ◽  
Vol 62 (364) ◽  
pp. 317-322 ◽  
Author(s):  
S. Zaiou ◽  
A. Harabi ◽  
E. Harabi ◽  
A. Guechi ◽  
N. Karboua ◽  
...  

Abstract In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO3 is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm3). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy.


RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 14727-14735 ◽  
Author(s):  
Long Wen ◽  
Xuebing Zhou ◽  
Deqing Liang

In this work, the decomposition behaviour of methane hydrate in porous media was investigated microscopically using powder X-ray diffraction, cryogenic scanning electron microscopy and in situ Raman spectroscopy.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1370 ◽  
Author(s):  
Dawei Wang ◽  
Shiyu Zhang ◽  
Di Zhou ◽  
Kaixin Song ◽  
Antonio Feteira ◽  
...  

Dense (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 (100−x) wt.% (Bi0.95Li0.05)(V0.9Mo0.1)O4 (BLVMO)-x wt.% Na2Mo2O7 (NMO) composite ceramics were successfully fabricated through cold sintering at 150 °C under at 200 MPa for 30 min. X-ray diffraction, back-scattered scanning electron microscopy, and Raman spectroscopy not only corroborated the coexistence of BLVMO and NMO phases in all samples, but also the absence of parasitic phases and interdiffusion. With increasing NMO concentration, the relative pemittivity (εr) and the Temperature Coefficient of resonant Frequency (TCF) decreased, whereas the Microwave Quality Factor (Qf) increased. Near-zero TCF was measured for BLVMO-20wt.%NMO composites which exhibited εr ~ 40 and Qf ~ 4000 GHz. Finally, a dielectric Graded Radial INdex (GRIN) lens was simulated using the range of εr in the BLVMO-NMO system, which predicted a 70% aperture efficiency at 26 GHz, ideal for 5G applications.


Sign in / Sign up

Export Citation Format

Share Document