scholarly journals Novel amide-functionalized chloramphenicol base bifunctional organocatalysts for enantioselective alcoholysis of meso-cyclic anhydrides

2018 ◽  
Vol 14 ◽  
pp. 309-317 ◽  
Author(s):  
Lingjun Xu ◽  
Shuwen Han ◽  
Linjie Yan ◽  
Haifeng Wang ◽  
Haihui Peng ◽  
...  

A family of novel chloramphenicol base-amide organocatalysts possessing a NH functionality at C-1 position as monodentate hydrogen bond donor were developed and evaluated for enantioselective organocatalytic alcoholysis of meso-cyclic anhydrides. These structural diversified organocatalysts were found to induce high enantioselectivity in alcoholysis of anhydrides and was successfully applied to the asymmetric synthesis of (S)-GABOB.

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 401 ◽  
Author(s):  
Franz Steppeler ◽  
Dominika Iwan ◽  
Elżbieta Wojaczyńska ◽  
Jacek Wojaczyński

For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development.


2021 ◽  
Author(s):  
Zheng Wang ◽  
Yajun Wang ◽  
Qianjie Xie ◽  
Zhiying Fan ◽  
Yehua Shen

The coupling of CO2 and epoxide is promising way to reduce atmospheric carbon by converting it into value-added cyclic carbonate. Pursuing efficient catalysts is highly attractive for the title reaction....


2019 ◽  
Vol 281 ◽  
pp. 423-430 ◽  
Author(s):  
Matteo Tiecco ◽  
Federico Cappellini ◽  
Francesco Nicoletti ◽  
Tiziana Del Giacco ◽  
Raimondo Germani ◽  
...  

2013 ◽  
Vol 117 (39) ◽  
pp. 19991-20001 ◽  
Author(s):  
Julia Wack ◽  
Renée Siegel ◽  
Tim Ahnfeldt ◽  
Norbert Stock ◽  
Luís Mafra ◽  
...  

2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Abdullah M. A. Al Majid ◽  
Mohammad Shahidul Islam ◽  
Assem Barakat ◽  
Mohamed H. M. Al-Agamy ◽  
Mu. Naushad

The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist’s acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole totrans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist’s acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole toβ-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examinedin vitroantimicrobial activity and their preliminary results are reported.


Sign in / Sign up

Export Citation Format

Share Document