scholarly journals A practical synthesis of long-chain iso-fatty acids (iso-C12–C19) and related natural products

2013 ◽  
Vol 9 ◽  
pp. 1807-1812 ◽  
Author(s):  
Mark B Richardson ◽  
Spencer J Williams

A gram-scale synthesis of terminally-branched iso-fatty acids (iso-C12–C19) was developed commencing with methyl undec-10-enoate (methyl undecylenate) (for iso-C12–C14) or the C15and C16lactones pentadecanolide (for iso-C15–C17) and hexadecanolide (for iso-C18–C19). Central to the approaches outlined is the two-step construction of the terminal isopropyl group through addition of methylmagnesium bromide to the ester/lactones and selective reduction of the resulting tertiary alcohols. Thus, the C12, C17and C18iso-fatty acids were obtained in three steps from commercially-available starting materials, and the remaining C13–C16and C19iso-fatty acids were prepared by homologation or recursive dehomologations of these fatty acids or through intercepting appropriate intermediates. Highlighting the synthetic potential of the iso-fatty acids and various intermediates prepared herein, we describe the synthesis of the natural products (S)-2,15-dimethylpalmitic acid, (S)-2-hydroxy-15-methylpalmitic acid, and 2-oxo-14-methylpentadecane.

1996 ◽  
Vol 76 (03) ◽  
pp. 369-371 ◽  
Author(s):  
T A B Sanders ◽  
G J Miller ◽  
Tamara de Grassi ◽  
Najat Yahia

SummaryFactor VII coagulant activity (FVIIc) is associated with an increased risk of fatal ischaemic heart disease (IHD). Several reports have suggested that dietary fat intake or hypertriglyceridaemia are associated with elevated levels of FVII. This study demonstrates that an intake of long-chain fatty acids sufficient to induce postprandial lipaemia in healthy subjects leads to a substantial elevation in both FVIIc and the concentration of FVII circulating in the activated form. Such an increase in FVIIc could not be induced by medium-chain triglycerides. These results suggest that the consumption of a sufficient amount of long-chain triglycerides to induce postprandial lipaemia induces the activation of FVII.


2006 ◽  
Vol 60 (4) ◽  
pp. 485-489 ◽  
Author(s):  
Silvia Scaglioni ◽  
Elvira Verduci ◽  
Michela Salvioni ◽  
Maria Luisa Biondi ◽  
Giovanni Radaelli ◽  
...  

1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


Sign in / Sign up

Export Citation Format

Share Document