Postprandial Activation of Coagulant Factor VII by Long-chain Dietary Fatty Acids

1996 ◽  
Vol 76 (03) ◽  
pp. 369-371 ◽  
Author(s):  
T A B Sanders ◽  
G J Miller ◽  
Tamara de Grassi ◽  
Najat Yahia

SummaryFactor VII coagulant activity (FVIIc) is associated with an increased risk of fatal ischaemic heart disease (IHD). Several reports have suggested that dietary fat intake or hypertriglyceridaemia are associated with elevated levels of FVII. This study demonstrates that an intake of long-chain fatty acids sufficient to induce postprandial lipaemia in healthy subjects leads to a substantial elevation in both FVIIc and the concentration of FVII circulating in the activated form. Such an increase in FVIIc could not be induced by medium-chain triglycerides. These results suggest that the consumption of a sufficient amount of long-chain triglycerides to induce postprandial lipaemia induces the activation of FVII.

1999 ◽  
Vol 50 (8) ◽  
pp. 1299 ◽  
Author(s):  
R. S. Hegarty

Methane production is the principal end use of hydrogen gas derived by phosphoroclastic reactions or the release of protons from reducing equivalents by hydrogenases in the rumen. It should therefore be possible to reduce methanogenesis by (1) inhibiting H2 liberating reactions, (2) promoting alternative reactions which accept H+ during reoxidation of reducing equivalents, and (3) promoting alternative H2-using reactions. Strategies to reduce methanogenesis by these means are discussed. Particular attention is given to increasing synthesis of propionate and long chain fatty acids in the rumen, to acetogenesis, and to the actions of chemicals such as monensin and dietary fatty acids.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 861-861
Author(s):  
Jowy Seah Yi Hoong ◽  
Wee Siong Chew ◽  
Federico Torta ◽  
Chin Meng Khoo ◽  
Markus R Wenk ◽  
...  

Abstract Objectives Sphingolipid concentrations have been associated with risk of type 2 diabetes and cardiovascular diseases. Because sphingolipids can be synthesized de novo from saturated fatty acids (SFA), dietary fatty acids may affect plasma sphingolipid concentrations. We aimed to evaluate dietary fat and protein intakes in relation to circulating sphingolipid levels. Methods We used cross-sectional data from 2860 ethnic Chinese Singaporeans collected from 2004–2007. Nutrient intakes were estimated on the basis of a validated 159-item food frequency questionnaire. We quantified 79 molecularly distinct sphingolipids in a large-scale lipidomic evaluation from plasma samples. Results Higher saturated fat intake was associated with higher concentrations of 16:1; O2 sphingolipids including ceramides, monohexosylcermides, dihexosylceramides, sphingomyelins, and sphingosine 1-phosphates. Higher polyunsaturated fat intake was associated with lower plasma long-chain ceramides and long-chain monohexosylcermide concentrations. Protein intake was inversely associated with concentrations of most subclasses of sphingolipids, with the exception of sphingolipids containing a 16:1; O2 sphingoid base. Lower intake of saturated fat and higher intake of polyunsaturated fat and protein may decrease plasma concentrations of several sphingolipid classes. Conclusions These findings may represent a novel biological mechanism for the impact of nutrient intakes on cardio-metabolic health. Funding Sources This work was supported by the National Research Foundation Investigatorship grant (NRF-NRFI2015–05, to MRW), A*STAR (I1901E0040), and the National University Health System (NUHSRO/2014/085/AF-Partner/01, DRH). FT was supported by the NRF and A*STAR IAF-ICP I1901E0040.


2014 ◽  
Vol 146 (5) ◽  
pp. S-276-S-277
Author(s):  
Shawn Ritchie ◽  
Akita Hirofumi ◽  
Ichiro Takemasa ◽  
Fumio Nomura ◽  
Dushmanthi Jayasinghe ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 93
Author(s):  
Jowy Yi Hoong Seah ◽  
Wee Siong Chew ◽  
Federico Torta ◽  
Chin Meng Khoo ◽  
Markus R. Wenk ◽  
...  

Sphingolipid concentrations have been associated with risk of type 2 diabetes and cardiovascular diseases. Because sphingolipids can be synthesized de novo from saturated fatty acids (SFA), dietary fatty acids may affect plasma sphingolipid concentrations. We aimed to evaluate dietary fat and protein intakes in relation to circulating sphingolipid levels. We used cross-sectional data from 2860 ethnic Chinese Singaporeans collected from 2004–2007. Nutrient intakes were estimated on the basis of a validated 159-item food frequency questionnaire. We quantified 79 molecularly distinct sphingolipids in a large-scale lipidomic evaluation from plasma samples. Higher saturated fat intake was associated with higher concentrations of 16:1;O2 sphingolipids including ceramides, monohexosylcermides, dihexosylceramides, sphingomyelins, and sphingosine 1-phosphates. Higher polyunsaturated fat intake was associated with lower plasma long-chain ceramides and long-chain monohexosylcermide concentrations. Protein intake was inversely associated with concentrations of most subclasses of sphingolipids, with the exception of sphingolipids containing a 16:1;O2 sphingoid base. Lower intake of saturated fat and higher intake of polyunsaturated fat and protein may decrease plasma concentrations of several sphingolipid classes. These findings may represent a novel biological mechanism for the impact of nutrient intakes on cardio-metabolic health.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


1995 ◽  
Vol 73 (02) ◽  
pp. 239-242 ◽  
Author(s):  
E M Bladbjerg ◽  
T Tholstrup ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryThe mechanisms behind dietary effects on fasting coagulant activity of factor VII (FVII: C) are not clarified. In the present study of 15 young volunteers, two experimental diets differing in composition of saturated fatty acids (C18:0 [diet S] or C12:0 + C14:0 [diet ML]) were served for 3 weeks each. Fasting blood samples were collected before and after the dietary regimen and analysed for triglycerides, FVII:C, and protein concentrations of FVII, FII, FX, protein C, CRP, albumin, fibrinogen, and F1+2. FVII:C was significantly reduced on diet S compared with diet ML. This was accompanied by a decrease in FVII protein, F1+2 and the vitamin K-dependent proteins FII, FX, and protein C. In contrast, no changes were observed in triglycerides, FVII:C/FVII: Ag, albumin and CRP. Fibrinogen was increased on diet S compared with diet ML. Our findings suggest that the change in fasting FVII:C was part of a general change in concentrations of vitamin K-dependent proteins.


Sign in / Sign up

Export Citation Format

Share Document