Is problem posing about posing “problems”? A terminological framework for researching problem posing and problem solving

Author(s):  
Lukas Baumanns ◽  
Benjamin Rott

In this literature review, we critically compare different problem-posing situations used in research studies. This review reveals that the term “problem posing” is used for many different situations that differ substantially from each other. For some situations, it is debatable whether they provoke a posing activity at all. For other situations, we propose a terminological differentiation between posing routine tasks and posing non-routine problems. To reinforce our terminological specification and to empirically verify our theoretical considerations, we conducted some task-based interviews with students.

2021 ◽  
pp. 004723952110188
Author(s):  
Ali Battal ◽  
Gülgün Afacan Adanır ◽  
Yasemin Gülbahar

The computer science (CS) unplugged approach intends to teach CS concepts and computational thinking skills without employing any digital tools. The current study conducted a systematic literature review to analyze research studies that conducted investigations related to implementations of CS unplugged activities. A systematic review procedure was developed and applied to detect and subsequently review relevant research studies published from 2010 to 2019. It was found that 55 research studies (17 articles + 38 conference proceedings) satisfied the inclusion criteria for the analysis. These research studies were then examined with regard to their demographic characteristics, research methodologies, research results, and main findings. It was found that the unplugged approach was realized and utilized differently among researchers. The majority of the studies used the CS unplugged term when referring to “paper–pencil activities,” “problem solving,” “storytelling,” “games,” “tangible programming,” and even “robotics.”


ZDM ◽  
2021 ◽  
Author(s):  
Haim Elgrably ◽  
Roza Leikin

AbstractThis study was inspired by the following question: how is mathematical creativity connected to different kinds of expertise in mathematics? Basing our work on arguments about the domain-specific nature of expertise and creativity, we looked at how participants from two groups with two different types of expertise performed in problem-posing-through-investigations (PPI) in a dynamic geometry environment (DGE). The first type of expertise—MO—involved being a candidate or a member of the Israeli International Mathematical Olympiad team. The second type—MM—was comprised of mathematics majors who excelled in university mathematics. We conducted individual interviews with eight MO participants who were asked to perform PPI in geometry, without previous experience in performing a task of this kind. Eleven MMs tackled the same PPI task during a mathematics test at the end of a 52-h course that integrated PPI. To characterize connections between creativity and expertise, we analyzed participants’ performance on the PPI tasks according to proof skills (i.e., auxiliary constructions, the complexity of posed tasks, and correctness of their proofs) and creativity components (i.e., fluency, flexibility and originality of the discovered properties). Our findings demonstrate significant differences between PPI by MO participants and by MM participants as reflected in the more creative performance and more successful proving processes demonstrated by MO participants. We argue that problem posing and problem solving are inseparable when MO experts are engaged in PPI.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Indra Kurniawan ◽  
Rahman Abdillah

<em>Problem-solving skill requires the ability to think creatively in exploring various alternatives or solutions. Someone’s ability to think has different levels depending on works he produces. Therefore, it is necessary to carry out an analysis of the determination of student’s creativity level by employing a fuzzy mamdani method. The aim of this research is to know the process of determining the student’s creativity level by using a fuzzy mamdani method. The research applies a survey method with a qualitative research model in which the data are collected by observation, interview and literature review techniques</em>


2019 ◽  
Vol 1 (3) ◽  
pp. 8-11
Author(s):  
MURUGAN SUBRAMANIAM ◽  
Muhammad Khair Noordin

Current survey shows there are 1 out of 5 graduates are unemployed (Site, 2018). Lack of non technical skills among graduates be one of the main reason for unemployment.Data shows Problem Solving Skills is the second most important non technical skill sought by employers (To et al., 2019); The studies show that the problems cannot be solved by using the same kind of thinking approach applied at the moment it was created. Therefore, a systematic analytical skill is required to handle the engineering related problems happening at manufacturing environment or engineering workplace. The purpose of this paper is to analyze the existing literature about Problem Solving skills for graduate engineers through a systematic literature review. This paper analyses literature through electronic databases mainly from Scopus and Web of Science. This paper summarizes types of problem solving skills applied in the engineering field as of now. Based on that, engineers can differentiate and understand the approach of the problem solving skills in the industrial environment to improve the failures and increase productivity.


Sign in / Sign up

Export Citation Format

Share Document