Optimizing The Benefit of Sound Processors Coupled to Personal FM Systems

2008 ◽  
Vol 19 (08) ◽  
pp. 585-594 ◽  
Author(s):  
Jace Wolfe ◽  
Erin C. Schafer

Background: Use of personal frequency modulated (FM) systems significantly improves speech recognition in noise for users of cochlear implants (CI). There are, however, a number of adjustable parameters of the cochlear implant and FM receiver that may affect performance and benefit, and there is limited evidence to guide audiologists in optimizing these parameters. Purpose: This study examined the effect of two sound processor audio-mixing ratios (30/70 and 50/50) on speech recognition and functional benefit for adults with CIs using the Advanced Bionics Auria® sound processors. Research Design: Fully-repeated repeated measures experimental design. Each subject participated in every speech-recognition condition in the study, and qualitative data was collected with subject questionnaires. Study Sample: Twelve adults using Advanced Bionics Auria sound processors. Participants had greater than 20% correct speech recognition on consonant-nucleus-consonant (CNC) monosyllabic words in quiet and had used their CIs for at least six months. Intervention: Performance was assessed at two audio-mixing ratios (30/70 and 50/50). For the 50/50 mixing ratio, equal emphasis is placed on the signals from the sound processor and the FM system. For the 30/70 mixing ratio, the signal from the microphone of the sound processor is attenuated by 10 dB. Data Collection and Analysis: Speech recognition was assessed at two audio-mixing ratios (30/70 and 50/50) in quiet (35 and 50 dB HL) and in noise (+5 signal-to-noise ratio) with and without the personal FM system. After two weeks of using each audio-mixing ratio, the participants completed subjective questionnaires. Results: Study results suggested that use of a personal FM system resulted in significant improvements in speech recognition in quiet at low-presentation levels, speech recognition in noise, and perceived benefit in noise. Use of the 30/70 mixing ratio resulted in significantly poorer speech recognition for low-level speech that was not directed to the FM transmitter. There was no significant difference in speech recognition in noise or functional benefit between the two audio-mixing ratios. Conclusions: Use of a 50/50 audio-mixing ratio is recommended for optimal performance with an FM system in quiet and noisy listening situations.

2020 ◽  
Vol 31 (04) ◽  
pp. 246-256 ◽  
Author(s):  
Thomas Wesarg ◽  
Yvonne Stelzig ◽  
Dan Hilgert-Becker ◽  
Bjorn Kathage ◽  
Konstantin Wiebe ◽  
...  

Abstract Background Previous research showed benefits of remote wireless technology in bilaterally moderate- to-severe hearing-impaired participants provided with hearing aid(s), cochlear implant(s) (CIs), or bimodal devices as well as in single-sided deaf (SSD) cochlear implant recipients (with CI from Cochlear™) and normal-hearing (NH) participants. Purpose To evaluate the effect of the digital remote wireless microphone system, Roger™, on speech recognition at different levels of multisource noise in SSD CI recipients using MED-EL CI sound processor OPUS 2. Outcomes were assessed as a function of the listening condition (NH only, NH + CI, NH + CIRog, NHRog + CI, and NHRog + CIRog), Roger™ receiver type (Roger™ Focus for NH; Roger™ Xand Roger™ MyLink for CI) and accessory mixing ratio. Study Sample Eleven adult, SSD participants aided with CI from MED-EL. Data Collection and Analysis Speech recognition in noise was assessed in two no-Roger™ conditions, one Roger™ X condition, and two Roger™ MyLink conditions. For the Roger™ X and no-Roger™ conditions, speech recognition was tested at 60.3 dB(A) with the Oldenburg Sentence Test in classroom noise at levels of 55, 65, and 75 dB(A). For the two Roger™ MyLink conditions, speech recognition at 60.3 dB(A) was measured at a noise level of 75 dB(A). Roger™ X was assessed with an accessory mixing ratio of 1:1 (summation of unattenuated microphone and audio accessory input). For Roger™ MyLink, two accessory mixing ratios were investigated, MT (1:1, summation of unattenuated microphone and telecoil input) and T with maximum attenuation of microphone input. Results Speech recognition at higher noise levels (65 and 75 dB(A)) improved significantly with Roger™ in both unilateral use conditions (NH + CIRog and NHRog + CI) as well as bilateral use condition (NHRog + CIRog). Both the bilateral application of Roger™ and the unilateral Roger™ application on the NH ear outperformed the Roger™ application on CI alone. There was no statistically significant effect of type of CI Roger™ receiver (Roger™ X or Roger™ MyLink) and the accessory mixing ratio (MT or T) on speech recognition. Conclusions Speech recognition for distant speakers in multisource noise improved significantly with the application of Roger™ in SSD CI recipients. Both the unilateral Roger™ application on the NH ear or the CI as well as the bilateral Roger™ application can be recommended.


2019 ◽  
Vol 30 (07) ◽  
pp. 607-618 ◽  
Author(s):  
Thomas Wesarg ◽  
Susan Arndt ◽  
Konstantin Wiebe ◽  
Frauke Schmid ◽  
Annika Huber ◽  
...  

AbstractPrevious research in cochlear implant (CI) recipients with bilateral severe-to-profound sensorineural hearing loss showed improvements in speech recognition in noise using remote wireless microphone systems. However, to our knowledge, no previous studies have addressed the benefit of these systems in CI recipients with single-sided deafness.The objective of this study was to evaluate the potential improvement in speech recognition in noise for distant speakers in single-sided deaf (SSD) CI recipients obtained using the digital remote wireless microphone system, Roger. In addition, we evaluated the potential benefit in normal hearing (NH) participants gained by applying this system.Speech recognition in noise for a distant speaker in different conditions with and without Roger was evaluated with a two-way repeated-measures design in each group, SSD CI recipients, and NH participants. Post hoc analyses were conducted using pairwise comparison t-tests with Bonferroni correction.Eleven adult SSD participants aided with CIs and eleven adult NH participants were included in this study.All participants were assessed in 15 test conditions (5 listening conditions × 3 noise levels) each. The listening conditions for SSD CI recipients included the following: (I) only NH ear and CI turned off, (II) NH ear and CI (turned on), (III) NH ear and CI with Roger 14, (IV) NH ear with Roger Focus and CI, and (V) NH ear with Roger Focus and CI with Roger 14. For the NH participants, five corresponding listening conditions were chosen: (I) only better ear and weaker ear masked, (II) both ears, (III) better ear and weaker ear with Roger Focus, (IV) better ear with Roger Focus and weaker ear, and (V) both ears with Roger Focus. The speech level was fixed at 65 dB(A) at 1 meter from the speech-presenting loudspeaker, yielding a speech level of 56.5 dB(A) at the recipient's head. Noise levels were 55, 65, and 75 dB(A). Digitally altered noise recorded in school classrooms was used as competing noise. Speech recognition was measured in percent correct using the Oldenburg sentence test.In SSD CI recipients, a significant improvement in speech recognition was found for all listening conditions with Roger (III, IV, and V) versus all no-Roger conditions (I and II) at the higher noise levels (65 and 75 dB[A]). NH participants significantly benefited from the application of Roger in noise for higher levels, too. In both groups, no significant difference was detected between any of the different listening conditions at 55 dB(A) competing noise. There was also no significant difference between any of the Roger conditions III, IV, and V across all noise levels.The application of the advanced remote wireless microphone system, Roger, in SSD CI recipients provided significant benefits in speech recognition for distant speakers at higher noise levels. In NH participants, the application of Roger also produced a significant benefit in speech recognition in noise.


Author(s):  
Sharon Miller ◽  
Jace Wolfe ◽  
Mila Duke ◽  
Erin Schafer ◽  
Smita Agrawal ◽  
...  

Abstract Background Cochlear implant (CI) recipients frequently experience difficulty understanding speech over the telephone and rely on hearing assistive technology (HAT) to improve performance. Bilateral inter-processor audio streaming technology using nearfield magnetic induction is an advanced technology incorporated within a hearing aid or CI processor that can deliver telephone audio signals captured at one sound processor to the sound processor at the opposite ear. To date, limited data exist examining the efficacy of this technology in CI users to improve speech understanding on the telephone. Purpose The primary objective of this study was to examine telephone speech recognition outcomes in bilateral CI recipients in a bilateral inter-processor audio streaming condition (DuoPhone) compared with a monaural condition (i.e., telephone listening with one sound processor) in quiet and in background noise. Outcomes in the monaural and bilateral conditions using either a telecoil or T-Mic2 technology were also assessed. The secondary aim was to examine how deactivating microphone input in the contralateral processor in the bilateral wireless streaming conditions, and thereby modifying the signal-to-noise ratio, affected speech recognition in noise. Research Design A repeated-measures design was used to evaluate speech recognition performance in quiet and competing noise with the telephone signal transmitted acoustically or via the telecoil to the ipsilateral sound processor microphone in monaural and bilateral wireless streaming listening conditions. Study Sample Nine bilateral CI users with Advanced Bionics HiRes 90K and/or CII devices were included in the study. Data Collection and Analysis The effects of phone input (monaural [DuoPhone Off] vs. bilateral [DuoPhone on]) and processor input (T-Mic2 vs. telecoil) on word recognition in quiet and noise were assessed using separate repeated-measures analysis of variance. Effect of the contralateral device mic deactivation on speech recognition outcomes for the T-Mic2 DuoPhone conditions was assessed using paired Student's t-tests. Results Telephone speech recognition was significantly better in the bilateral inter-processor streaming conditions relative to the monaural conditions in both quiet and noise. Speech recognition outcomes were similar in quiet and noise when using the T-Mic2 and telecoil in the monaural and bilateral conditions. For the acoustic DuoPhone conditions using the T-Mic2, speech recognition in noise was significantly better when the microphone of the contralateral processor was disabled. Conclusion Inter-processor audio streaming allows for bilateral listening on the telephone and produces better speech recognition in quiet and in noise compared with monaural listening conditions for adult CI recipients.


2016 ◽  
Vol 27 (05) ◽  
pp. 388-394 ◽  
Author(s):  
Mila Morais Duke ◽  
Jace Wolfe ◽  
Erin Schafer

Background: Cochlear implant (CI) recipients often experience difficulty understanding speech in noise and speech that originates from a distance. Many CI recipients also experience difficulty understanding speech originating from a television. Use of hearing assistance technology (HAT) may improve speech recognition in noise and for signals that originate from more than a few feet from the listener; however, there are no published studies evaluating the potential benefits of a wireless HAT designed to deliver audio signals from a television directly to a CI sound processor. Purpose: The objective of this study was to compare speech recognition in quiet and in noise of CI recipients with the use of their CI alone and with the use of their CI and a wireless HAT (Cochlear Wireless TV Streamer). Research Design: A two-way repeated measures design was used to evaluate performance differences obtained in quiet and in competing noise (65 dBA) with the CI sound processor alone and with the sound processor coupled to the Cochlear Wireless TV Streamer. Study Sample: Sixteen users of Cochlear Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Data Collection and Analysis: Participants were evaluated in four conditions including use of the sound processor alone and use of the sound processor with the wireless streamer in quiet and in the presence of competing noise at 65 dBA. Speech recognition was evaluated in each condition with two full lists of Computer-Assisted Speech Perception Testing and Training Sentence-Level Test sentences presented from a light-emitting diode television. Results: Speech recognition in noise was significantly better with use of the wireless streamer compared to participants’ performance with their CI sound processor alone. There was also a nonsignificant trend toward better performance in quiet with use of the TV Streamer. Performance was significantly poorer when evaluated in noise compared to performance in quiet when the TV Streamer was not used. Conclusions: Use of the Cochlear Wireless TV Streamer designed to stream audio from a television directly to a CI sound processor provides better speech recognition in quiet and in noise when compared to performance obtained with use of the CI sound processor alone.


2013 ◽  
Vol 24 (10) ◽  
pp. 927-940 ◽  
Author(s):  
Erin C. Schafer ◽  
Denise Romine ◽  
Elizabeth Musgrave ◽  
Sadaf Momin ◽  
Christy Huynh

Background: Previous research has suggested that electrically coupled frequency modulation (FM) systems substantially improved speech-recognition performance in noise in individuals with cochlear implants (CIs). However, there is limited evidence to support the use of electromagnetically coupled (neck loop) FM receivers with contemporary CI sound processors containing telecoils. Purpose: The primary goal of this study was to compare speech-recognition performance in noise and subjective ratings of adolescents and adults using one of three contemporary CI sound processors coupled to electromagnetically and electrically coupled FM receivers from Oticon. Research Design: A repeated-measures design was used to compare speech-recognition performance in noise and subjective ratings without and with the FM systems across three test sessions (Experiment 1) and to compare performance at different FM-gain settings (Experiment 2). Descriptive statistics were used in Experiment 3 to describe output differences measured through a CI sound processor. Study Sample: Experiment 1 included nine adolescents or adults with unilateral or bilateral Advanced Bionics Harmony (n = 3), Cochlear Nucleus 5 (n = 3), and MED-EL OPUS 2 (n = 3) CI sound processors. In Experiment 2, seven of the original nine participants were tested. In Experiment 3, electroacoustic output was measured from a Nucleus 5 sound processor when coupled to the electromagnetically coupled Oticon Arc neck loop and electrically coupled Oticon R2. Data Collection and Analysis: In Experiment 1, participants completed a field trial with each FM receiver and three test sessions that included speech-recognition performance in noise and a subjective rating scale. In Experiment 2, participants were tested in three receiver-gain conditions. Results in both experiments were analyzed using repeated-measures analysis of variance. Experiment 3 involved electroacoustic-test measures to determine the monitor-earphone output of the CI alone and CI coupled to the two FM receivers. Results: The results in Experiment 1 suggested that both FM receivers provided significantly better speech-recognition performance in noise than the CI alone; however, the electromagnetically coupled receiver provided significantly better speech-recognition performance in noise and better ratings in some situations than the electrically coupled receiver when set to the same gain. In Experiment 2, the primary analysis suggested significantly better speech-recognition performance in noise for the neck-loop versus electrically coupled receiver, but a second analysis, using the best performance across gain settings for each device, revealed no significant differences between the two FM receivers. Experiment 3 revealed monitor-earphone output differences in the Nucleus 5 sound processor for the two FM receivers when set to the +8 setting used in Experiment 1 but equal output when the electrically coupled device was set to a +16 gain setting and the electromagnetically coupled device was set to the +8 gain setting. Conclusions: Individuals with contemporary sound processors may show more favorable speech-recognition performance in noise electromagnetically coupled FM systems (i.e., Oticon Arc), which is most likely related to the input processing and signal processing pathway within the CI sound processor for direct input versus telecoil input. Further research is warranted to replicate these findings with a larger sample size and to develop and validate a more objective approach to fitting FM systems to CI sound processors.


2015 ◽  
Vol 26 (06) ◽  
pp. 532-539 ◽  
Author(s):  
Jace Wolfe ◽  
Mila Morais ◽  
Erin Schafer

Background: Cochlear implant (CI) recipients experience difficulty understanding speech in noise. Remote-microphone technology that improves the signal-to-noise ratio is recognized as an effective means to improve speech recognition in noise; however, there are no published studies evaluating the potential benefits of a wireless, remote-microphone, digital, audio-streaming accessory device (heretofore referred to as a remote-microphone accessory) designed to deliver audio signals directly to a CI sound processor. Purpose: The objective of this study was to compare speech recognition in quiet and in noise of recipients while using their CI alone and with a remote-microphone accessory. Research Design: A two-way repeated measures design was used to evaluate performance differences obtained in quiet and in increasing levels of competing noise with the CI sound processor alone and with the sound processor paired to the remote microphone accessory. Study Sample: Sixteen users of Cochlear Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Data Collection and Analysis: Participants were evaluated in 14 conditions including use of the sound processor alone and with the remote-microphone accessory in quiet and at the following signal levels: 65 dBA speech (at the location of the participant; 85 dBA at the location of the remote microphone) in quiet and competing noise at 50, 55, 60, 65, 70, and 75 dBA noise levels. Speech recognition was evaluated in each of these conditions with one full list of AzBio sentences. Results: Speech recognition in quiet and in all competing noise levels, except the 75 dBA condition, was significantly better with use of the remote-microphone accessory compared with participants’ performance with the CI sound processor alone. As expected, in all technology conditions, performance was significantly poorer as the competing noise level increased. Conclusions: Use of a remote-microphone accessory designed for a CI sound processor provides superior speech recognition in quiet and in noise when compared with performance obtained with the CI sound processor alone.


2012 ◽  
Vol 23 (03) ◽  
pp. 171-181 ◽  
Author(s):  
Rachel A. McArdle ◽  
Mead Killion ◽  
Monica A. Mennite ◽  
Theresa H. Chisolm

Background: The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. Purpose: To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. Research Design: A repeated measures experimental design. Study Sample: Twenty veterans (aged 59–85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Data Collection and Analysis: Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results: Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was obtained by most participants with both ears aided in Experiment 1 and in the binaural condition in Experiment 2. Conclusions: In both experiments, only 20% of our subjects did better in noise with a single ear, roughly similar to the earlier Jerger et al (1993) finding that 8–10% of elderly hearing aid users preferred one hearing aid.


2009 ◽  
Vol 20 (07) ◽  
pp. 409-421 ◽  
Author(s):  
Jace Wolfe ◽  
Erin C. Schafer ◽  
Benjamin Heldner ◽  
Hans Mülder ◽  
Emily Ward ◽  
...  

Background: Use of personal frequency-modulated (FM) systems significantly improves speech recognition in noise for users of cochlear implants (CIs). Previous studies have shown that the most appropriate gain setting on the FM receiver may vary based on the listening situation and the manufacturer of the CI system. Unlike traditional FM systems with fixed-gain settings, Dynamic FM automatically varies the gain of the FM receiver with changes in the ambient noise level. There are no published reports describing the benefits of Dynamic FM use for CI recipients or how Dynamic FM performance varies as a function of CI manufacturer. Purpose: To evaluate speech recognition of Advanced Bionics Corporation or Cochlear Corporation CI recipients using Dynamic FM vs. a traditional FM system and to examine the effects of Autosensitivity on the FM performance of Cochlear Corporation recipients. Research Design: A two-group repeated-measures design. Participants were assigned to a group according to their type of CI. Study Sample: Twenty-five subjects, ranging in age from 8 to 82 years, met the inclusion criteria for one or more of the experiments. Thirteen subjects used Advanced Bionics Corporation, and 12 used Cochlear Corporation implants. Intervention: Speech recognition was assessed while subjects used traditional, fixed-gain FM systems and Dynamic FM systems. Data Collection and Analysis: In Experiments 1 and 2, speech recognition was evaluated with a traditional, fixed-gain FM system and a Dynamic FM system using the Hearing in Noise Test sentences in quiet and in classroom noise. A repeated-measures analysis of variance (ANOVA) was used to evaluate effects of CI manufacturer (Advanced Bionics and Cochlear Corporation), type of FM system (traditional and dynamic), noise level, and use of Autosensitivity for users of Cochlear Corporation implants. Experiment 3 determined the effects of Autosensitivity on speech recognition of Cochlear Corporation implant recipients when listening through the speech processor microphone with the FM system muted. A repeated-measures ANOVA was used to examine the effects of signal-to-noise ratio and Autosensitivity. Results: In Experiment 1, use of Dynamic FM resulted in better speech recognition in noise for Advanced Bionics recipients relative to traditional FM at noise levels of 65, 70, and 75 dB SPL. Advanced Bionics recipients obtained better speech recognition in noise with FM use when compared to Cochlear Corporation recipients. When Autosensitivity was enabled in Experiment 2, the performance of Cochlear Corporation recipients was equivalent to that of Advanced Bionics recipients, and Dynamic FM was significantly better than traditional FM. Results of Experiment 3 indicate that use of Autosensitivity improves speech recognition in noise of signals directed to the speech processor relative to no Autosensitivity. Conclusions: Dynamic FM should be considered for use with persons with CIs to improve speech recognition in noise. At default CI settings, FM performance is better for Advanced Bionics recipients when compared to Cochlear Corporation recipients, but use of Autosensitivity by Cochlear Corporation users results in equivalent group performance.


2021 ◽  
Vol 9 (9) ◽  
pp. 232596712110266
Author(s):  
Gretchen D. Oliver ◽  
Jessica L. Downs Talmage ◽  
Kenzie B. Friesen ◽  
Michael G. Saper ◽  
Jeffrey R. Dugas

Background: Baseball leagues have implemented pitch count and pitch type restrictions based on biomechanical concepts associated with pitch type. Softball has not yet adopted these practices, although softball pitchers continue to pitch at a high volume and learn multiple pitches at a young age. Purpose: To examine shoulder and elbow kinetics between the fastball, curveball, and changeup, as well as to provide descriptive upper extremity pain data in National Collegiate Athletic Association (NCAA) softball pitchers. Study Design: Descriptive laboratory study. Methods: Study participants consisted of 27 female NCAA Division I softball pitchers (age, 20.2 ± 1.9 years; height, 175.7 ± 5.7 cm; weight, 83.6 ± 12.7 kg). The participants pitched 3 balls of each pitch type, and kinetic data were recorded. A one-way within-participants repeated-measures multivariate analysis of variance was used to determine significant differences in kinetics and pitch speed between pitch types. Results: Results revealed a statistically significant main effect for pitch type (Wilks λ = .087; F = 36.523; P < .001). Post hoc testing showed that the changeup produced less anterior elbow force compared with the fastball ( P < .001) and the curveball ( P = .012). In addition, the changeup produced less shoulder distraction force compared with the fastball ( P < .001) and the curveball ( P = .001). Additionally, there was a significant difference in pitch speed between all 3 pitch types ( P = .006). The curveball revealed no statistically significant kinetic differences compared with the fastball. Conclusion: The fastball and curveball placed similar stress on the upper extremity in collegiate softball pitchers. However, in comparison with the changeup, the fastball and curveball placed increased stress on the upper extremity. More research is needed to fully explain the differences seen between pitch type and injury risk. Clinical Relevance: Sports medicine professionals, coaches, and athletes should use the current study results to note these differences in shoulder distraction and elbow anterior forces between softball pitch types. The study results can be used as a reference and basis for future research investigating kinetic differences across varying pitch types.


2021 ◽  
Vol 32 (07) ◽  
pp. 469-476
Author(s):  
Maria Madalena Canina Pinheiro ◽  
Patricia Cotta Mancini ◽  
Alexandra Dezani Soares ◽  
Ângela Ribas ◽  
Danielle Penna Lima ◽  
...  

Abstract Background Speech recognition in noisy environments is a challenge for both cochlear implant (CI) users and device manufacturers. CI manufacturers have been investing in technological innovations for processors and researching strategies to improve signal processing and signal design for better aesthetic acceptance and everyday use. Purpose This study aimed to compare speech recognition in CI users using off-the-ear (OTE) and behind-the-ear (BTE) processors. Design A cross-sectional study was conducted with 51 CI recipients, all users of the BTE Nucleus 5 (CP810) sound processor. Speech perception performances were compared in quiet and noisy conditions using the BTE sound processor Nucleus 5 (N5) and OTE sound processor Kanso. Each participant was tested with the Brazilian-Portuguese version of the hearing in noise test using each sound processor in a randomized order. Three test conditions were analyzed with both sound processors: (i) speech level fixed at 65 decibel sound pressure level in a quiet, (ii) speech and noise at fixed levels, and (iii) adaptive speech levels with a fixed noise level. To determine the relative performance of OTE with respect to BTE, paired comparison analyses were performed. Results The paired t-tests showed no significant difference between the N5 and Kanso in quiet conditions. In all noise conditions, the performance of the OTE (Kanso) sound processor was superior to that of the BTE (N5), regardless of the order in which they were used. With the speech and noise at fixed levels, a significant mean 8.1 percentage point difference was seen between Kanso (78.10%) and N5 (70.7%) in the sentence scores. Conclusion CI users had a lower signal-to-noise ratio and a higher percentage of sentence recognition with the OTE processor than with the BTE processor.


Sign in / Sign up

Export Citation Format

Share Document