GENETIC DIFFERENTIATION BY STR-MARKERS AND PRODUCTIVITY TRAITS OF KARACHAEV GOATS FROM DIFFERENT BREEDING ZONES

2021 ◽  
Vol 1 (19) ◽  
pp. 349-352
Author(s):  
A.M. Aibazov ◽  
T.V. Mamontova ◽  
V.R. Kharzinova ◽  
N.A. Zinovieva

Data have been obtained indicating differences by the live weight and exterior appearance of Karachaev goats bred in the mountain area, foothill, and plain-hill zone. A high level of genetic diversity and a clear genetic differentiation of populations from different breeding zones on the basis of STR-markers have been established.

2018 ◽  
Vol 7 (4.38) ◽  
pp. 122
Author(s):  
Kairat Dossybayev ◽  
Aizhan Mussayeva ◽  
Bakytzhan Bekmanov ◽  
Beibit Kulataev

The genetic structure of three Kazakh sheep breeds was examined by using 12 microsatellite loci. A total of 144 alleles were detected from the 12 STR loci, with a mean value of 12.0. The highest allele diversity was found at the locus CSRD247 (16 alleles). PIC value showed that all studied STR markers are more informative and appropriate for genetic analysis of three Kazakh sheep populations. Beside of INRA006, all markers had high level of genetic variability. As Fixation index shows, the excess of the heterozygosity was observed only in loci MAF065. Obtained number of private alleles in Edilbai, Kazakh Arkhar Merino and Kazakh Fine-wool sheep were 25, 17 and 15 respectively. Genetic diversity was higher in Edilbai population than in other two populations. The genetic variability was lower in Kazakh Arkhar Merino sheep than in the Edilbai and Kazakh Fine-wool sheep breeds. The genetic distance was the largest between Edilbai and Kazakh Arkhar Merinos. Also, the moderate differentiation was observed between Edilbai and Kazakh Arkhar Merinos.   


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 795F-795
Author(s):  
K.M. Aradhva ◽  
F. Zee ◽  
R.M. Manshardt

Fifty-six accessions involving five taxa of Nephelium (N. Iappaceum varieties lappaceum and pallens, N. hypoleucum, N. ramboutan-ake, and N. cuspidatum) were fingerprinted and evaluated for genetic diversity using isozyme polymorphism. All five taxa were polymorphic for most of the enzymes encoded by 10 putative loci. Number of alleles per locus ranged from three for Pgi-1 to nine for Pgi-2 with a total of 57 alleles. Thirty-eight accessions out of 56 possessed unique isozyme genotypes, indicating a high level of diversity in the collection. On average, 80% of the loci were polymorphic and the expected and observed heterozygosities were 0.374 and 0.373, respectively. The cluster analysis of the isozyme data revealed five distinct clusters representing the five taxa included in the study. Genetic differentiation within N. Iappaceum var. Iappaceum was evident from the cluster analysis. Isozyme data indicated that N. ramboutan-ake is the closest relative of N. Iappaceum var. Iappaceum, followed by N. hypoleucum, N. Iappaceum var. pallens, and N. cuspidatum. Interestingly, the varieties of N. Iappaceum exhibited genetic divergence far beyond that of the congenerics, N. hypoleucum and N. ramboutan-ake and may require a taxonomic revision.


2011 ◽  
Vol 57 (6) ◽  
pp. 717-724 ◽  
Author(s):  
Jiandong Yang ◽  
Zhihe Zhang ◽  
Fujun Shen ◽  
Xuyu Yang ◽  
Liang Zhang ◽  
...  

Abstract Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A), Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 278 ◽  
Author(s):  
Hong-Ying Guo ◽  
Ze-Liang Wang ◽  
Zhen Huang ◽  
Zhi Chen ◽  
Han-Bo Yang ◽  
...  

Alnus cremastogyne Burk. is a nonleguminous, nitrogen-fixing tree species. It is also the most important endemic species of Alnus Mill. in China, possessing important ecological functions. This study investigated population genetic variation in A. cremastogyne using 175 trees sampled from 14 populations native to Sichuan Province with 25 simple sequence repeat (SSR) markers. Our analysis showed that A. cremastogyne has an average of 5.83 alleles, 3.37 effective alleles, an expected heterozygosity of 0.63, and an observed heterozygosity of 0.739, indicating a relatively high level of genetic diversity. The A. cremastogyne populations in Liangshan Prefecture (Meigu, Mianning) showed the highest level of genetic diversity, whereas the Yanting population had the lowest. Our analysis also showed that the average genetic differentiation of 14 A. cremastogyne populations was 0.021. Analysis of molecular variance (AMOVA) revealed that 97% of the variation existed within populations; only 3% was among populations. Unweighted pair-group method with arithmetic means (UPGMA) clustering and genetic structure analysis showed that the 14 A. cremastogyne populations could be clearly divided into three clusters: Liangshan Prefecture population, Ganzi Prefecture population, the other population in the mountain area around the Sichuan Basin and central Sichuan hill area, indicating some geographical distribution. Further analysis using the Mantel test showed that this geographical distribution was significantly correlated with elevation.


2020 ◽  
pp. 1-10
Author(s):  
Shaoyu Chen ◽  
Tao Wu ◽  
Liangjun Xiao ◽  
Delu Ning ◽  
Li Pan

Abstract Iron walnut, Juglans sigillata Dode, restricted to southwestern China, has its centre of distribution in Yunnan Province which has a varied climate, geography and rich plant diversity. Yunnan contains abundant J. sigillata germplasm. In this study, a provincial-scale set of walnut germplasm resources (14 populations comprising 1122 individuals) was evaluated for genetic diversity based on 20 simple sequence repeat (SSR) loci. The number of SSR alleles per locus ranged from 7 to 27, with an average of 17.55. Mean allelic richness and mean private allelic richness ranged from 3.40 to 4.62 and 0.11 to 0.36, with average of 3.93 and 0.30, respectively. Expected heterozygosity (He) varied from 0.26 to 0.78, with an average of 0.57. Polymorphism information content ranged from 0.22 to 0.79, with an average of 0.57. Genetic differentiation (FST) was 0.05, indicating that only 5% of total genetic variability was inter-populational, a finding supported by an analysis of molecular variance and STRUCTURE analysis. Relatively high gene flow (Nm = 6.70) was observed between populations. A unweighted pair-group method with arithmetic analysis classified the 14 populations into two major groups. Mantel testing uncovered a significant correlation between geographic distance and genetic distance (r = 0.33, P = 0.04). Overall, the research revealed a moderately high level of genetic diversity in the germplasm and low genetic differentiation among populations, which showed great potential for further development and exploitation of this resource.


2008 ◽  
Vol 133 (2) ◽  
pp. 234-241 ◽  
Author(s):  
David M. Czarnecki ◽  
Madhugiri Nageswara Rao ◽  
Jeffrey G. Norcini ◽  
Frederick G. Gmitter ◽  
Zhanao Deng

Seeds of Coreopsis leavenworthii Torr. & Gray (Asteraceae) are being commercially produced but the lack of genetic diversity information has hindered growers and end users from addressing several critical issues affecting wild collection, commercial production, distribution, and the use of seeds. In this study, the genetic diversity and differentiation among natural, production, and introduced populations were analyzed at the molecular level using 320 amplified fragment length polymorphism (AFLP) markers. A high level of diversity [68.6% average polymorphism; total genetic diversity (H t ) = 0.309] and a moderate level of genetic differentiation [total genetic diversity residing among populations (G st ) = 0.226; Φ st = 0.244; Bayesian analog of Nei's G st (G st -B) = 0.197] was detected among six natural populations—two each from northern, central, and southern Florida. Two distance-based clustering analyses, based on an individual's AFLP phenotypes or a population's allele frequencies, grouped natural populations into three clusters, concordant with our previous results from a common garden study of phenotypic variation. Clustering of populations was mostly according to their respective geographical origin within Florida. The correlation between geographical distances and pairwise F st values between populations was very significant (r = 0.855, P < 0.0001). Two central Florida natural populations were divergent and grouped into separate clusters, indicating that the existence of factors other than physical distance alone were contributing to genetic isolation. Three production populations maintained a level of genetic diversity comparable to that in the natural populations and were grouped with the natural populations from which the production populations were derived, suggesting that the genetic identity of the seed origin was maintained under production practices. The genetic diversity of the introduced population was comparable to that of the source populations (central Florida natural populations), but genetic shift seems to have occurred, causing the introduced population to cluster with local (northern Florida) populations where planted. The observed genetic differentiation among natural populations may indicate a need to develop appropriate zones within Florida for preservation of genetic diversity during seed collection, increase, and distribution. This high level of population differentiation also suggests a need to collect and analyze more natural populations across Florida and from Alabama for a better understanding of the species' genetic diversity and population structure across its distribution range.


2021 ◽  
pp. 58-63
Author(s):  
Olga Sergeevna Romanenkova ◽  
Valeria Vladimirovna Volkova ◽  
Anna Aleksandrovna Zimina

The study of allele pool condition and genetic diversity of Brown Swiss cattle breed was conducted with using STR-markers. Sample collection included samples (n=347) of five breeds: Russian selection Brown Swiss (BSH1), German selection Brown Swiss (BSH2), Jersey (DJ), Simmental (SIM), Kostromskaya(KOS) and Holstein (HOLSH). Polymorphism of 11 microsatellite loci was studied on 16-channell genetic analyzer ABI3130xl. A total of 393 allales with minimal number in DJ group (54) and maximal in SIM group (84) were founded. The number of alleles per locus ranged from 25 (BM1824) to 50 (TGLA122) and average number of alleles per locus ranged from 4.33 (TGLA126) to 8.33 (TGLA122) with a mean of 5.95. Effective number of alleles per locus varied from 2.88 (DJ) to 3.76 (BSH2). Maximal (4.64) and minimal (3.73) numbers of informative alleles were found in BSH2 and BSH1 groups, respectively. Observed heterozygosity range exceeded 0.70 in all groups, except DJ. A total of 23 private alleles were detected ranged from 0,005 (SIM) to 0,385 (DJ). AMOVA analysis showed that 80.068% of variation was observed within populations while 5.186% of variability was intergroup differences. The population structure analysis showed a high level of belonging of all groups to their own cluster. The FCA method revealed an overlapping of multilocus genotypes of BSH1, BSH2 иKOS groups.  The results we obtained reveal a high level of genetic diversity in Russian population of Brown Swiss cattle breed.


2020 ◽  
Author(s):  
Ryo Orita ◽  
Yukio Nagano ◽  
Yoshio Kawamura ◽  
Kei Kimura ◽  
Genta Kobayashi

AbstractThe razor clam Sinonovacula constricta is a commercially important bivalve in Japan. The current distribution of this species in Japan is limited to Ariake Bay, where the fishery stock is declining. It is necessary to understand the genetic population structure of this species in order to restore the fishery stock while preserving the genetic diversity of the clam. Here, we report for the first time the genetic population structure of S. constricta in Ariake Bay, Japan. Paired-end restriction site-associated DNA sequencing (RAD-Seq) analyzed samples of S. constricta collected from seven mudflats located along Ariake Bay. Two different genetic populations exist in Ariake Bay, one inhabiting wild habitats and the other inhabiting the transplanted area of artificial seedlings. Our results suggest that genetic differentiation occurred between these two populations (Fst value = 0.052), and a high level of genetic differentiation is maintained between the two groups. In the future, the two genetically distinct populations need to be available as fishery resources, while taking into account their conservation and hybridization status.


2005 ◽  
Vol 54 (1-6) ◽  
pp. 116-122 ◽  
Author(s):  
Y. H. Peng ◽  
Z. X. Lu ◽  
K. Chen ◽  
O. Luukkanen ◽  
H. Korpelainen ◽  
...  

Abstract In this study, the genetic diversity of Populus cathayana Rehd was investigated using microsatellite markers. In a total of 150 individuals collected from six natural populations in the southeastern part of the Qinghai-Tibetan Plateau in China, a high level of microsatellite polymorphism was detected. At the seven investigated microsatellite loci, the number of alleles per locus ranged from 5 to 16, with a mean of 11.3, the observed heterozygosities across populations ranged from 0.408 to 0.986, with a mean of 0.792, and the expected heterozygosities across populations ranged from 0.511 to 0.891, with a mean of 0.802. The proportion of genetic differentiation among populations accounted for 37.3% of the whole genetic diversity. The presence of such a high level of genetic diversity could be attributed to the features of the species and the habitats where the sampled populations occur: The southeastern part of the Qinghai-Tibetan Plateau is regarded as the natural distribution and variation center of the genus Populus in China. Variation in environmental conditions and selection pressures in different populations, and topographic dispersal barriers could be factors associated with the high level of genetic differentiation found among populations. The populations possessed significant heterozygosity excesses, which may be due to extensive population mixing at the local scale. The cluster analysis showed that the populations are not strictly grouped according to their geographic distances but the habitat characteristics also influence the divergence pattern. In addition, we suggest that population SHY should be regarded as an ecologically divergent species of P. cathayana.


2018 ◽  
Vol 63 (No. 3) ◽  
pp. 85-93 ◽  
Author(s):  
H. Vostrá-Vydrová ◽  
L. Vostrý ◽  
B. Hofmanová ◽  
N. Moravčíková ◽  
Z. Veselá ◽  
...  

In this study, we aimed to estimate and compare genetic diversity of two native draught horse breeds and check the possible influence of Noriker breed population on these native breeds. Genetic analyses of relationships and admixture were performed in two native endangered draught horse populations (Silesian Noriker and Czech-Moravian Belgian horses) and one open breed (Noriker). Totally 104 alleles from 13 microsatellite loci were detected in 1298 horses. The average number of alleles per locus was the highest in the Czech-Moravian Belgian horse (7.62) and the lowest in the Silesian Noriker (7.31), the differences were non-significant, whereas the observed and expected heterozygosities per breed ranged from 0.680 (Czech-Moravian Belgian) to 0.719 (Noriker) and from 0.678 (Silesian Noriker) to 0.714 (Noriker). The estimates of Wright’s F<sub>ST</sub> between each pair of breeds indicated a low level of genetic segregation. At the individual level across the analyzed population, formation of two clusters was observed with respect to historical breed development. Moreover, the membership probability outputs showed that the frequencies of alleles varied across the two main regions represented by the Czech-Moravian Belgian and other analyzed breeds. Our results indicated high genetic variability, low inbreeding, and low genetic differentiation, especially between Silesian Noriker and Noriker, which is caused by the high level of admixture. This high level of admixture was in accordance with geographical location, history, and breeding practices of the analyzed breeds. The Silesian Noriker and Noriker breeds seem to be the most genetically related and the decision to consider them as the same population is thus highly supported. The study provides data and information utilizable in the management of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.  


Sign in / Sign up

Export Citation Format

Share Document