scholarly journals STUDIES ON THE TOTAL COLUMN ATMOSPHERIC AEROSOL OPTICAL DEPTH, OZONE AND PRECIPITABLE WATER CONTENT IN THE TROPICS: A CASE STUDY OF MALAYSIA

2011 ◽  
Vol 1 (2) ◽  
pp. 55-62
Author(s):  
Said Fhazli

A Multifilter Rotating Shadowband Radiometer has been used to monitor the directly transmitted solar irradiance at six wavelength regions (413.9 nm, 494.6 nm, 612.7 nm, 670.8 nm, 868.0 nm and 939.1 nm) for three clear stable days at Bangi. Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using this instrument. The result shows that the maximum optical depth of aerosol at the shorter wavelength, especially on 24th February 2002 with mean value of 0.254 (24th February 2002), 0.095 (25th February 2002), and 0.072 (26th February 2002) while the ozone optical depth shows the mean value 0.0153 on 24th February 2002, 0.0174 on 25thFebruary 2002 and 0.0175 on 26th February 2002 with the avarage absorption coefficient (a), 0.2 (24th and 26th February 2002) and 0.1 (25th February 2002). The mean value of water vapor content shows that  = 0.356 cm and k = 0.301 cm for wavelength 939.1 nm. From the aerosol optical depth, it shows the existence of smoke type of aerosol on February, 24th to 25th 2002 with Ångström coefficient, , is 1.534 and 1.5513, respectively, and sea water vapor is 0.9889 on 26thFebruary 2002. From the Ångström coefficient, it shows that atmosphere layer of Bangi at that moment is similar to U.S. Standard Atmosphere, with maximum spectral irradiance on black body temperature is 5860 oK.

2011 ◽  
Vol 1 (2) ◽  
pp. 47-54
Author(s):  
Said Fhazli

A Multifilter Rotating Shadowband Radiometer has been used to monitor the directly transmitted solar irradiance at six wavelength regions (413.9 nm, 494.6 nm, 612.7 nm, 670.8 nm, 868.0 nm and 939.1 nm) for three clear stable days at Bangi. The primary objective of this study is to determine the aerosol optical depth (AOD), total column ozone (TCO) and precipitable watercontent (PWC). The result shows that the maximum optical depth of aerosol at the shorter wavelength, especially on 24th February 2002 with mean value of 0.254 (24th February 2002), 0.095 (25th February 2002), and 0.072 (26th February 2002) while the ozone optical depth shows the mean value 0.0153 on 24th February 2002, 0.0174 on 25th February 2002 and 0.0175 on 26thFebruary 2002 with the avarage absorption coefficient (a), 0.2 (24th and 26th February 2002) and 0.1 (25th February 2002). The mean value of water vapor content shows that  = 0.356 cmand k = 0.301 cm for wavelength 939.1 nm. From the aerosol optical depth, it shows the existence of smoke type of aerosol on February, 24th to 25th 2002 with Ångström coefficient, , is 1.534 and 1.5513, respectively, and sea water vapor is 0.9889 on 26th February 2002. From the Ångström coefficient, it shows that atmosphere layer of Bangi at that moment is similar to U.S. Standard Atmosphere, with maximum spectral irradiance on black body temperature is 5860 oK.


Author(s):  
Forrest M. Mims

AbstractA 30-year time series (4 Feb 1990 to 4 Feb 2020) of aerosol optical depth of the atmosphere (AOD), total precipitable water (TPW) and total column ozone has been conducted in Central Texas using simple, highly stable instruments. All three parameters in this ongoing measurement series exhibited robust annual cycles. They also responded to many atmospheric events, including the historic volcanic eruption of Mount Pinatubo (1991), a record El Niño (1998), an unprecedented biomass smoke event (1998) and the La Niña that caused the driest drought in recorded Texas history (2011). Reduced air pollution caused mean AOD to decline from 0.175 to 0.14. The AOD trend measured for 30 years by an LED sun photometer, the first of its kind, parallels the trend from 20 years of measurements by a modified Microtops II. While TPW responded to El Niño-Southern Oscillation conditions, TPW exhibited no trend over the 30 years. The TPW data compare favorably with 4.5 years of simultaneous measurements by a nearby NOAA GPS (r2 = 0.78). The 30 years of ozone measurements compare favorably with those from a series of NASA ozone satellites (r2 = 0.78). In 2016, 194 comparisons of Microtops II and world standard ozone instrument Dobson 83 at the Mauna Loa Observatory agreed within 1.9% (r2 = 0.81). The paper concludes by observing that students and citizen scientists can collect scientifically useful atmospheric data with simple sun photometers that use one or more LEDs as spectrally selective photodiodes.


MAPAN ◽  
2019 ◽  
Vol 34 (4) ◽  
pp. 451-463 ◽  
Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar ◽  
Santosh T. Mane ◽  
S. Chandra ◽  
...  

2001 ◽  
Vol 10 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Panuganti China Sattilingam Devara ◽  
Rajamma Sukumaran Maheskumar ◽  
Pulidindi Ernest Raj ◽  
Kundan Krishnarao Dani ◽  
Sunil Manohar Sonbawne

Sign in / Sign up

Export Citation Format

Share Document