scholarly journals Investigating the Effects of Probiotics on Pneumococcal Colonization Using an In Vitro Adherence Assay

Author(s):  
Eileen M. Dunne ◽  
Zheng Q. Toh ◽  
Mary John ◽  
Jayne Manning ◽  
Catherine Satzke ◽  
...  
2018 ◽  
Vol 76 (7) ◽  
Author(s):  
Evida A Dennis ◽  
Mamie T Coats ◽  
Sarah Griffin ◽  
Bing Pang ◽  
David E Briles ◽  
...  

AbstractMucoid bacteria, predominately Pseudomonas aeruginosa, are commonly associated with decline in pulmonary function in children with cystic fibrosis (CF), and are thought to persist at least in part due to a greater propensity toward forming biofilms. We isolated a higher frequency of mucoid Streptococcus pneumoniae (Sp) expressing high levels of capsular polysaccharides from sputa from children with CF, compared to those without CF. We compared biofilm formation and maturation by mucoid and non-mucoid isolates of Sp collected from children with and without CF. Non-mucoid Sp serotype 19A and 19F isolates had significantly higher levels of biofilm initiation and adherence to CF epithelial cells than did serotype 3 isolates. However, strains expressing high levels of capsule had significantly greater biofilm maturation, as evidenced by increased density and thickness in static and continuous flow assays via confocal microscopy. Finally, using a serotype 3 Sp strain, we showed that highly encapsulated mucoid phase variants predominate during late adherence and better colonize CFTR–/– as compared to wild-type mice in respiratory infection studies. These findings indicate that overexpression of capsule can enhance the development of mature pneumococcal biofilms in vitro, and may contribute to pneumococcal colonization in CF lung disease.


Microbiology ◽  
2009 ◽  
Vol 155 (7) ◽  
pp. 2401-2410 ◽  
Author(s):  
L. E. Cron ◽  
H. J. Bootsma ◽  
N. Noske ◽  
P. Burghout ◽  
S. Hammerschmidt ◽  
...  

Streptococcus pneumoniae produces two surface-associated lipoproteins that share homology with two distinct families of peptidyl-prolyl isomerases (PPIases), the streptococcal lipoprotein rotamase A (SlrA) and the putative proteinase maturation protein A (PpmA). Previously, we have demonstrated that SlrA has PPIase activity, and that the enzyme plays a role in pneumococcal virulence. Here, we investigated the contribution of PpmA to pneumococcal pathogenesis. Pneumococcal mutants of D39 and TIGR4 lacking the gene encoding PpmA were less capable of persisting in the nasopharynx of mice, demonstrating the contribution of PpmA to pneumococcal colonization. This observation was partially confirmed in vitro, as the pneumococcal mutants NCTC10319ΔppmA and TIGR4ΔcpsΔppmA, but not D39ΔcpsΔppmA, were impaired in adherence to Detroit 562 pharyngeal cells. This suggests that the contribution of PpmA to pneumococcal colonization is not solely the result of its role in adherence to epithelial cells. Deficiency in PpmA did not result in reduced binding to various extracellular matrix and serum proteins. Similar to SlrA, we observed that PpmA was involved in immune evasion. Uptake of PpmA-deficient D39Δcps and NCTC10319 by human polymorphonuclear leukocytes was significantly enhanced compared to the isogenic wild-types. In addition, ingestion of D39ΔppmA, but not that of either NCTC10319ΔppmA or TIGR4ΔppmA, by murine macrophage cell line J774 was also enhanced, whereas intracellular killing remained unaffected. We conclude that PpmA contributes to the early stages of infection, i.e. colonization. The contribution of PpmA to virulence can be explained by its strain-specific role in adherence to epithelial cells and contribution to the evasion of phagocytosis.


2017 ◽  
Vol 12 (3) ◽  
pp. 122 ◽  
Author(s):  
Duk Yoon Kim ◽  
Je Chul Lee
Keyword(s):  

2003 ◽  
Vol 47 (1) ◽  
pp. 375-377 ◽  
Author(s):  
J. M. Loeffler ◽  
V. A. Fischetti

ABSTRACT Pal and Cpl-1, two purified bacteriophage lytic enzymes, were tested for their in vitro activity, alone and in combination, against several serotypes of Streptococcus pneumoniae, including penicillin-resistant strains. The enzymes demonstrated synergism in their ability to cleave the bacterial peptidoglycan and thus may be more efficient for the prevention and elimination of pneumococcal colonization.


1996 ◽  
Vol 40 (1) ◽  
pp. 40-45
Author(s):  
Tetsuo Ichikawa ◽  
Katsuhiko Hirota ◽  
Hideo Kanitani ◽  
Rudi Wigianto ◽  
Naeko Kawamoto ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Christopher R. Doyle ◽  
Liise-anne Pirofski

ABSTRACT Streptococcus pneumoniae colonization of the nasopharynx (NP) is a prerequisite for invasive pneumococcal disease (IPD). The marked reduction in IPD that followed the routine use of pneumococcal polysaccharide conjugate vaccines (PCVs) has been linked to reduced NP colonization with vaccine-included serotypes (STs), with the caveat that PCVs are less effective against pneumonia than against IPD. Although PCV-elicited opsonic antibodies that enhance phagocytic killing of the homologous ST are considered a key correlate of PCV-mediated protection, recent studies question this relationship for some STs, including ST3. Studies with monoclonal antibodies (MAbs) to the pneumococcal capsular polysaccharide (PPS) of ST3 (PPS3) have shown that nonopsonic, as well as opsonic, antibodies can each protect mice against pneumonia and sepsis, but the effect of these types of MAbs on NP colonization is unknown. In this study, we determined the effects of protective opsonic and nonopsonic PPS3 MAbs on ST3 NP colonization in mice. Our results show that a nonopsonic MAb reduced early NP colonization and prevented ST3 dissemination to the lungs and blood, but an opsonic MAb did not. Moreover, the opsonic MAb induced a proinflammatory NP cytokine response, but the nonopsonic MAb had an antiinflammatory effect. The effect of the nonopsonic MAb on colonization did not require its Fc region, but its antiinflammatory effect did. Our findings challenge the paradigm that opsonic MAbs are required to prevent NP colonization and suggest that further studies of the activity of nonopsonic antibodies could advance our understanding of mechanisms of PCV efficacy and provide novel correlates of protection. IMPORTANCE Pneumococcal conjugate vaccines (PCVs) have markedly reduced the incidence of invasive pneumococcal disease (IPD). Vaccine-elicited pneumococcal polysaccharide (PPS) antibodies that enhance in vitro phagocyte killing of vaccine-included serotypes (STs) (opsonic antibodies) have been considered correlates of vaccine protection and are thought to exert their effect at the initial site of infection, the nasopharynx (NP). However, the data presented here show that this is not the necessarily the case. A nonopsonic PPS monoclonal antibody (MAb) reduced pneumococcal colonization and dissemination of its homologous ST in mice, but surprisingly, an opsonic PPS MAb to the same ST did not. These results reveal that PPS antibodies can work in different ways than previously thought, challenge the paradigm that opsonic antibodies are required to prevent IPD, and provide new insights into PCV efficacy that could lead to novel correlates of vaccine protection.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mukesh Kumar Yadav ◽  
Seok-Won Park ◽  
Sung-Won Chae ◽  
Jae-Jun Song

Pneumococcal colonization and disease is often associated with biofilm formation, in which the bacteria exhibit elevated resistance both to antibiotics and to host defense systems, often resulting in infections that are persistent and difficult to treat. We evaluated the effect of sinefungin, a nucleoside analogue of S-adenosylmethionine, on pneumococcalin vitrobiofilm formation andin vivocolonization. Sinefungin is bacteriostatic to pneumococci and significantly decreased biofilm growth and inhibited proliferation and structure of actively growing biofilms but did not alter growth or the matrix structure of established biofilms. Sinefungin significantly reduced pneumococcal colonization in rat middle ear. The quorum sensing molecule (autoinducer-2) production was significantly reduced by 92% in sinefungin treated samples. TheluxS, pfs, andspeEgenes were downregulated in biofilms grown in the presence of sinefungin. This study shows that sinefungin inhibits pneumococcal biofilm growthin vitroand colonizationin vivo, decreases AI-2 production, and downregulatesluxS,pfs, andspeEgene expressions. Therefore, the S-adenosylmethionine (SAM) inhibitors could be used as lead compounds for the development of novel antibiofilm agents against pneumococci.


2009 ◽  
Vol 77 (5) ◽  
pp. 2076-2083 ◽  
Author(s):  
Ying-Jie Lu ◽  
Sophie Forte ◽  
Claudette M. Thompson ◽  
Porter W. Anderson ◽  
Richard Malley

ABSTRACT Cell wall polysaccharide (CWPS), pneumolysin, and surface adhesin A (PsaA) are antigens common to virtually all serotypes of Streptococcus pneumoniae (pneumococcus), and all have been studied separately for use in protection. Previously we showed that protection against nasopharyngeal (NP) colonization by intranasal vaccination of mice with killed pneumococci is mediated by TH17 cells and correlates with interleukin-17A (IL-17A) expression by T cells in vitro; we have also shown that CWPS and other species-common antigens protect against colonization by a similar mechanism. Here we made a fusion protein of PsaA with the pneumolysin nontoxic derivative PdT and then coupled CWPS to the fusion protein, aiming to enhance immune responses to all three antigens. When given intranasally with cholera toxin adjuvant, the fusion conjugate induced higher serum antibody titers and greater priming for IL-17A responses than an equimolar mixture of the three antigens. The conjugate administered intranasally protected mice against experimental NP colonization by a strain of serotype 6B, while mice immunized with the mixture or with bivalent conjugates were not protected. Subcutaneous immunization with the conjugate and alum adjuvant likewise induced higher antibody titers than the mixture, primed for IL-17A responses, and reduced colonization. The conjugate, but not the antigen mixture, fully protected mice from fatal pneumonia caused by a highly virulent serotype 3 strain. Thus, a covalent construct of three antigens common to all serotypes exhibits protection with both mucosal and systemic administration.


Sign in / Sign up

Export Citation Format

Share Document