scholarly journals Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture

Author(s):  
Michael P. Storm ◽  
Ian Sorrell ◽  
Rebecca Shipley ◽  
Sophie Regan ◽  
Kim A. Luetchford ◽  
...  
Author(s):  
M. A. Arias ◽  
A. Valdés ◽  
D. Curbelo ◽  
O. M. Morejón ◽  
I. Caballero ◽  
...  

2008 ◽  
Vol 183 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Chawon Yun ◽  
Yonggang Wang ◽  
Debaditya Mukhopadhyay ◽  
Peter Backlund ◽  
Nagamalleswari Kolli ◽  
...  

Ubiquitin-like protein/sentrin-specific proteases (Ulp/SENPs) mediate both processing and deconjugation of small ubiquitin-like modifier proteins (SUMOs). Here, we show that Ulp/SENP family members SENP3 and SENP5 localize within the granular component of the nucleolus, a subnucleolar compartment that contains B23/nucleophosmin. B23/nucleophosmin is an abundant shuttling phosphoprotein, which plays important roles in ribosome biogenesis and which has been strongly implicated in hematopoietic malignancies. Moreover, we found that B23/nucleophosmin binds SENP3 and SENP5 in Xenopus laevis egg extracts and that it is essential for stable accumulation of SENP3 and SENP5 in mammalian tissue culture cells. After either codepletion of SENP3 and SENP5 or depletion of B23/nucleophosmin, we observed accumulation of SUMO proteins within nucleoli. Finally, depletion of these Ulp/SENPs causes defects in ribosome biogenesis reminiscent of phenotypes observed in the absence of B23/nucleophosmin. Together, these results suggest that regulation of SUMO deconjugation may be a major facet of B23/nucleophosmin function in vivo.


2000 ◽  
Vol 20 (3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Ellen A. A. Nollen ◽  
Jeanette F. Brunsting ◽  
Jaewhan Song ◽  
Harm H. Kampinga ◽  
Richard I. Morimoto

ABSTRACT Studies on the Hsp70 chaperone machine in eukaryotes have shown that Hsp70 and Hsp40/Hdj1 family proteins are sufficient to prevent protein misfolding and aggregation and to promote refolding of denatured polypeptides. Additional protein cofactors include Hip and Bag1, identified in protein interaction assays, which bind to and modulate Hsp70 chaperone activity in vitro. Bag1, originally identified as an antiapoptotic protein, forms a stoichiometric complex with Hsp70 and inhibits completely Hsp70-dependent in vitro protein refolding of an unfolded polypeptide. Given its proposed involvement in multiple cell signaling events as a regulator of Raf1, Bcl2, or androgen receptor, we wondered whether Bag1 functions in vivo as a negative regulator of Hsp70. In this study, we demonstrate that Bag1, expressed in mammalian tissue culture cells, has pronounced effects on one of the principal activities of Hsp70, as a molecular chaperone essential for stabilization and refolding of a thermally inactivated protein. The levels of Hsp70 and Bag1 were modulated either by transient transfection or conditional expression in stably transfected lines to achieve levels within the range detected in different mammalian tissue culture cell lines. For example, a twofold increase in the concentration of Bag1 reduced Hsp70-dependent refolding of denatured luciferase by a factor of 2. This effect was titratable, and higher levels of wild-type but not a mutant form of Bag1 further inhibited Hsp70 refolding by up to a factor of 5. The negative effects of Bag1 were also observed in a biochemical analysis of Bag1- or Hsp70-overexpressing cells. The ability of Hsp70 to maintain thermally denatured firefly luciferase in a soluble state was reversed by Bag1, thus providing an explanation for the in vivo chaperone-inhibitory effects of Bag1. Similar effects on Hsp70 were observed with other cytoplasmic isoforms of Bag1 which have in common the carboxyl-terminal Hsp70-binding domain and differ by variable-length amino-terminal extensions. These results provide the first formal evidence that Bag1 functions in vivo as a regulator of Hsp70 and suggest an intriguing complexity for Hsp70-regulatory events.


Author(s):  
Heide Schatten ◽  
Neidhard Paweletz ◽  
Ron Balczon

To study the role of sulfhydryl group formation during cell cycle progression, mammalian tissue culture cells (PTK2) were exposed to 100¼M 2-mercaptoethanol for 2 to 6 h during their exponential phase of growth. The effects of 2-mercaptoethanol on centrosomes, chromosomes, microtubules, membranes and intermediate filaments were analyzed by transmission electron microscopy (TEM) and by immunofluorescence microscopy (IFM) methods using a human autoimmune antibody directed against centrosomes (SPJ), and a mouse monoclonal antibody directed against tubulin (E7). Chromosomes were affected most by this treatment: premature chromosome condensation was detected in interphase nuclei, and the structure in mitotic chromosomes was altered compared to control cells. This would support previous findings in dividing sea urchin cells in which chromosomes are arrested at metaphase while the centrosome splitting cycle continues. It might also support findings that certairt-sulfhydryl-blocking agents block cyclin destruction. The organization of the microtubule network was scattered probably due to a looser organization of centrosomal material at the interphase centers and at the mitotic poles.


2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


2001 ◽  
Vol 75 (6) ◽  
pp. 2792-2802 ◽  
Author(s):  
Dawn K. Krueger ◽  
Sean M. Kelly ◽  
Daniel N. Lewicki ◽  
Rosanna Ruffolo ◽  
Thomas M. Gallagher

ABSTRACT The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.


1979 ◽  
Vol 37 (1) ◽  
pp. 169-180
Author(s):  
P.B. Armstrong

The sole cell type (the amoebocyte) found in the coelomic fluid of the horseshoe crab, Limulus polyphemus can be stimulated to become motile by extravasation or trauma. Motility was studied using time-lapse microcinematography and direct microscopic examination of cells in tissue culture and in gill leaflets isolated from young animals. Phase-contrast and Nomarski differential-interference contrast optics were employed. Both in culture and in the gills, motile cells showed 2 interconvertible morphological types: the contracted cell, which was compact and rounded and had a relatively small area of contact with the substratum, and a flattened from with a larger area of contact. In both morphological types, motility involved the protrusion of hyaline pseudopods followed by flow of granular endoplasm forward in the pseudoplod. Cellular motility in vivo (in the gill leaflet) was morphologically identical to that displayed in tissue culture. In culture, motility was unaffected by the nature of the substratum: cells were indistinguishable on fluid (paraffin oil) or solid (glass) substrata or on hydrophobic (paraffin oil, siliconized glass) or hydrophilic (clean glass) surfaces. Cells migrated and spread on agar surfaces. Cell motility was unaffected by high concentrations (100 micrograms/ml) of the microtubule-depolymerizing agent colcemid and was abolished by cytochalasin B at 1 microgram/ml.


1961 ◽  
Vol 9 (2) ◽  
pp. 369-381 ◽  
Author(s):  
D. F. Parsons ◽  
M. A. Bender ◽  
E. B. Darden ◽  
Guthrie T. Pratt ◽  
D. L. Lindsley

The X5563 tumor has been grown in tissue culture. Cells similar to those of the original tumor migrated from the explant and attached to the glass walls of the culture vessels. Electron microscopy showed that large numbers of particles, similar in morphology to virus particles, were associated with these cells after 7 days of culture. The two principal types of particles found in the tumor in vivo appear to be present in vitro. Many more of these particles, however, were larger and showed a more complex structure. Whereas the particles were mainly localized inside endoplasmic reticulum or the Golgi zone in the tumors in vivo, in the tissue culture the majority of the particles were associated with the plasma membrane and were found outside of the cells. The relation of the particles to the granular body is discussed as well as a possible relation to the mammary tumor agent.


1991 ◽  
Vol 252 ◽  
Author(s):  
P. B. van Wachem ◽  
P. B. van Wachem ◽  
L. H. H. Olde Damink ◽  
P. J. Dijkstra ◽  
J. Feijen ◽  
...  

ABSTRACTPretreatment in tissue culture (TC) was previously found to markedly reduce the in vitro cytotoxicity of two types of crosslinked dermal sheep collagens (DSC's). This in vivo study confirms our in vitro results, in that TC-pretreatment of crosslinked DSC's resulted in the marked reduction or elimination of cytotoxic effects, such as increased cell infiltration, a deviant neutrophil-morphology, lipid formation and cell death. TC-pretreatment affected the crosslinked state of both DSC's in a different way, which could be deduced from the differences in gelatin-formation and presence of giant cells from macrophage- or fibroblast-origin. The results are explained in view of the differences in crosslinking.


1975 ◽  
Vol 149 (1) ◽  
pp. 289-291 ◽  
Author(s):  
G M Blackburn ◽  
P E Taussig

Anthracene becomes covalently bound to high-molecular-weight DNA in mammalian tissue culture as a result of irradiation at 365 nm after the incubation of cells with the hydrocarbon. At high radiation doses, the extent of binding exceeds one hydrocarbon molecule per 103 bases, and is lethal. At low radiation doses, much decreased binding is observed, but a majority of cells remain viable and can be recultured.


Sign in / Sign up

Export Citation Format

Share Document