Exploring Sequence Space to Identify Binding Sites for Regulatory RNA-Binding Proteins

Author(s):  
Ravinder Singh
2018 ◽  
Author(s):  
Alina Munteanu ◽  
Neelanjan Mukherjee ◽  
Uwe Ohler

AbstractMotivationRNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized.ResultsWe developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3‘UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP.AvailabilitySSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/[email protected]


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250592
Author(s):  
Hiren Banerjee ◽  
Ravinder Singh

Background Downstream targets for a large number of RNA-binding proteins remain to be identified. The Drosophila master sex-switch protein Sex-lethal (SXL) is an RNA-binding protein that controls splicing, polyadenylation, or translation of certain mRNAs to mediate female-specific sexual differentiation. Whereas some targets of SXL are known, previous studies indicate that additional targets of SXL have escaped genetic screens. Methodology/Principal findings Here, we have used an alternative molecular approach of GEnomic Selective Enrichment of Ligands by Exponential enrichment (GESELEX) using both the genomic DNA and cDNA pools from several Drosophila developmental stages to identify new potential targets of SXL. Our systematic analysis provides a comprehensive view of the Drosophila transcriptome for potential SXL-binding sites. Conclusion/Significance We have successfully identified new SXL-binding sites in the Drosophila transcriptome. We discuss the significance of our analysis and that the newly identified binding sites and sequences could serve as a useful resource for the research community. This approach should also be applicable to other RNA-binding proteins for which downstream targets are unknown.


Virology ◽  
1978 ◽  
Vol 84 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Arup Sen ◽  
Charles J. Sherr ◽  
George J. Todaro

2014 ◽  
Vol 11 (10) ◽  
pp. 1064-1070 ◽  
Author(s):  
Katharina Kramer ◽  
Timo Sachsenberg ◽  
Benedikt M Beckmann ◽  
Saadia Qamar ◽  
Kum-Loong Boon ◽  
...  

RNA Biology ◽  
2009 ◽  
Vol 6 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Jodi Bubenik ◽  
Andrea Ladd ◽  
Carri A. Gerber ◽  
Michael Budiman ◽  
Driscoll Donna

2019 ◽  
Author(s):  
Martin Lewinski ◽  
Yannik Bramkamp ◽  
Tino Köster ◽  
Dorothee Staiger

AbstractBackgroundRNA-binding proteins interact with their target RNAs at specific sites. These binding sites can be determined genome-wide through individual nucleotide resolution crosslinking immunoprecipitation (iCLIP). Subsequently, the binding sites have to be visualized. So far, no visualization tool exists that is easily accessible but also supports restricted access so that data can be shared among collaborators.ResultsHere we present SEQing, a customizable interactive dashboard to visualize crosslink sites on target genes of RNA-binding proteins that have been obtained by iCLIP. Moreover, SEQing supports RNA-seq data that can be displayed in a diffrerent window tab. This allows, e.g. crossreferencing the iCLIP data with genes differentially expressed in mutants of the RBP and thus obtain some insights into a potential functional relevance of the binding sites. Additionally, detailed information on the target genes can be incorporated in another tab.ConclusionSEQing is written in Python3 and runs on Linux. The web-based access makes iCLIP data easily accessible, even with mobile devices. SEQing is customizable in many ways and has also the option to be secured by a password. The source code is available at https://github.com/malewins/SEQing.


Sign in / Sign up

Export Citation Format

Share Document