scholarly journals A Light Weight Multi-Objective Task Offloading Optimization for Vehicular Fog Computing

2021 ◽  
Vol 17 (1) ◽  
pp. 1-10
Author(s):  
Sura Abdullah ◽  
Adnan Jabir

Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully addressed the transmission path to the destination node and did not consider the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli-Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC method.

Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2021 ◽  
Vol 13 (5) ◽  
pp. 128
Author(s):  
Jun Liu ◽  
Xiaohui Lian ◽  
Chang Liu

In Space–Air–Ground Integrated Networks (SAGIN), computation offloading technology is a new way to improve the processing efficiency of node tasks and improve the limitation of computing storage resources. To solve the problem of large delay and energy consumption cost of task computation offloading, which caused by the complex and variable network offloading environment and a large amount of offloading tasks, a computation offloading decision scheme based on Markov and Deep Q Networks (DQN) is proposed. First, we select the optimal offloading network based on the characteristics of the movement of the task offloading process in the network. Then, the task offloading process is transformed into a Markov state transition process to build a model of the computational offloading decision process. Finally, the delay and energy consumption weights are introduced into the DQN algorithm to update the computation offloading decision process, and the optimal offloading decision under the low cost is achieved according to the task attributes. The simulation results show that compared with the traditional Lyapunov-based offloading decision scheme and the classical Q-learning algorithm, the delay and energy consumption are respectively reduced by 68.33% and 11.21%, under equal weights when the offloading task volume exceeds 500 Mbit. Moreover, compared with offloading to edge nodes or backbone nodes of the network alone, the proposed mixed offloading model can satisfy more than 100 task requests with low energy consumption and low delay. It can be seen that the computation offloading decision proposed in this paper can effectively reduce the delay and energy consumption during the task computation offloading in the Space–Air–Ground Integrated Network environment, and can select the optimal offloading sites to execute the tasks according to the characteristics of the task itself.


2020 ◽  
Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

Abstract With the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2020 ◽  
Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

Abstract With the developing of Wireless Sensor Networks (WSNs), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Ping Qi

Traditional intent recognition algorithms of intelligent prosthesis often use deep learning technology. However, deep learning’s high accuracy comes at the expense of high computational and energy consumption requirements. Mobile edge computing is a viable solution to meet the high computation and real-time execution requirements of deep learning algorithm on mobile device. In this paper, we consider the computation offloading problem of multiple heterogeneous edge servers in intelligent prosthesis scenario. Firstly, we present the problem definition and the detail design of MEC-based task offloading model for deep neural network. Then, considering the mobility of amputees, the mobility-aware energy consumption model and latency model are proposed. By deploying the deep learning-based motion intent recognition algorithm on intelligent prosthesis in a real-world MEC environment, the effectiveness of the task offloading and scheduling strategy is demonstrated. The experimental results show that the proposed algorithms can always find the optimal task offloading and scheduling decision.


Author(s):  
Shivi Sharma ◽  
Hemraj Saini

: With the fast development of cloud computing methods, exponential growth is faced by number of users. It is complex for traditional data centres for performing number of jobs in real time because of inadequate resources bandwidth. Therefore, the method of fog computing is recommended for supporting and for providing fast cloud services. It is not a substitute but is a powerful complement of cloud computing. Reduction of energy consumption through the notion of fog computing has certainly been a challenge for the current researcher ,industry and community. Various industries including finance and health care do require a rich resource based platform for the purpose of processing large amount of data with cloud computing across fog architecture. The consumption of energy across fog servers relies on allocating techniques for services (user requests).It facilitates processing at the edge with the probability to interact with cloud. This article has proposed energy aware scheduling by using Artificial neural network (ANN) and Modified multi objective job scheduling (MMJS) techniques. The emphasis of the work is on reduction of energy consumption rate with less Service level agreement (SLA) violation in fog computing for data centres. The result shows that there is 3.9% reduction in SLA Violation when multi-objective function with ANN is applied.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4527
Author(s):  
Abid Ali ◽  
Muhammad Munawar Iqbal ◽  
Harun Jamil ◽  
Faiza Qayyum ◽  
Sohail Jabbar ◽  
...  

Restricted abilities of mobile devices in terms of storage, computation, time, energy supply, and transmission causes issues related to energy optimization and time management while processing tasks on mobile phones. This issue pertains to multifarious mobile device-related dimensions, including mobile cloud computing, fog computing, and edge computing. On the contrary, mobile devices’ dearth of storage and processing power originates several issues for optimal energy and time management. These problems intensify the process of task retaining and offloading on mobile devices. This paper presents a novel task scheduling algorithm that addresses energy consumption and time execution by proposing an energy-efficient dynamic decision-based method. The proposed model quickly adapts to the cloud computing tasks and energy and time computation of mobile devices. Furthermore, we present a novel task scheduling server that performs the offloading computation process on the cloud, enhancing the mobile device’s decision-making ability and computational performance during task offloading. The process of task scheduling harnesses the proposed empirical algorithm. The outcomes of this study enable effective task scheduling wherein energy consumption and task scheduling reduces significantly.


Author(s):  
Dadmehr Rahbari ◽  
Mohsen Nickray

Resource allocation and task scheduling in the Cloud environment faces many challenges, such as time delay, energy consumption, and security. Also, executing computation tasks of mobile applications on mobile devices (MDs) requires a lot of resources, so they can offload to the Cloud. But Cloud is far from MDs and has challenges as high delay and power consumption. Edge computing with processing near the Internet of Things (IoT) devices have been able to reduce the delay to some extent, but the problem is distancing itself from the Cloud. The fog computing (FC), with the placement of sensors and Cloud, increase the speed and reduce the energy consumption. Thus, FC is suitable for IoT applications. In this article, we review the resource allocation and task scheduling methods in Cloud, Edge and Fog environments, such as traditional, heuristic, and meta-heuristics. We also categorize the researches related to task offloading in Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC), and Mobile Fog Computing (MFC). Our categorization criteria include the issue, proposed strategy, objectives, framework, and test environment. 


Sign in / Sign up

Export Citation Format

Share Document