Impact of Wind-Assisted Technologies on Resistance and Stability of Commercial Ship

CFD Letters ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 95-115
Author(s):  
Aditya Agung Haripriyono ◽  
Yaseen Adnan Ahmed ◽  
Mohammed Abdul Hannan

The use of fossil fuels on commercial ships significantly contributes to the increase of carbon dioxide emission, and adaptation of renewable energy can help control that emission efficiently. Historically, the extraction of wind energy is found to be the best renewable energy solution for commercial ships; and recently, with renewed interest in this area, various wind energy extraction devices are proposed in the literature. This study investigates the effectiveness of one such technology, wing-sail, on a tanker ship. The NACA 4412 series is adopted to design the sail in this regard, and a fowler flap is added to aid the sail in low wind speed. ANSYS Fluent is used to carry out this CFD simulation-based study. The effects of onboard wing-sails under various apparent wind angles, wind speeds, and wing-sail orientations have been examined. The impact of wing-sail on the stability of the ship is also analyzed. It is concluded that the ship can save fuel and reduce carbon dioxide emissions by 1.8% to 2.4% while using the wing-sail with the aid of a fowler flap. Also, this combination of wing-sail with the fowler flap is found to be the best in providing extra thrust for commercial ships without significantly sacrificing its stability.

Author(s):  
Jarod C. Kelly ◽  
Deepak Sivaraman ◽  
Gregory A. Keoleian

Many studies that examine the impact of renewable energy installations on avoided carbon-dioxide utilize national, regional or state averages to determine the predicted carbon-dioxide offset. The approach of this computational study was to implement a dispatching strategy in order to determine precisely which electrical facilities would be avoided due to the installation of renewable energy technologies. This study focused on a single geographic location for renewable technology installation, San Antonio, Texas. The results indicate an important difference between calculating avoided carbon-dioxide when using simple average rates of carbon-dioxide emissions and a dispatching strategy that accounts for the specific electrical plants used to meet electrical demands. The avoided carbon-dioxide due to renewable energy technologies is overestimated when using national, regional and state averages. This occurs because these averages include the carbon-dioxide emission factors of electrical generating assets that are not likely to be displaced by the renewable technology installation. The study also provides a comparison of two specific renewable energy technologies: photovoltaics (PV) and wind turbines. The results suggest that investment in PV is more cost effective for the San Antonio location. While the results are only applicable to this location, the methodology is useful for evaluating renewable technologies at any location.


2020 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Peter Kay

Reduction in fossil fuels, contributing to greenhouse gases, and improvement of air quality from vehicle emissions is of growing concern worldwide. This has led to the introduction of several binding and non-binding agreements, such as the Renewable Energy Directive to increase the renewable content of fuel for transportation, the carbon dioxide emissions standards to limit the amount of carbon dioxide emissions from vehicles and the Euro Standards to limit the amount of emissions harmful to human health in the exhaust. However, the influence of the fuel composition on hazardous exhaust emissions is a complex, and often contradictory, relationship between factors such as the fuel properties, combustion characteristics and engine load. Therefore policy implemented to improve one aspect, such as a reduction in carbon dioxide, can have a detrimental effect on another such as increased NOx emissions.This paper analyses, in a holistic manner, the impact on carbon dioxide and harmful emissions from transient compression ignition engines when increasing the renewable content of the fuel to meet the renewable energy targets. The analysis is based on a model developed from a rigorous Design of Experiment methodology used to determine the complex relationship between renewable fuel content and exhaust emissions (carbon monoxide, carbon dioxide and nitrogen oxides). Unlike other studies, the results were collected from a transient engine cycle, the World Harmonised Light vehicle Test Procedure, rather than steady state conditions, thus the results are more applicable to the real world.The results generally show that as the amount of ethanol is increased then the NOx and CO emissions decrease compared to current pump diesel. Increasing the biodiesel content generally increases the CO and CO2 emissions from the engine. For practical reasons a ternary blend is required to minimise the diesel engine emissions whilst meeting the UK’s future renewable content target. A blend of B2.4E10 was found to be the optimum compromise between renewable content and engine emissions. However, for this to be achieved the UK will have to invest in second and third generation ethanol.


2021 ◽  
Vol 104 (3_suppl) ◽  
pp. 003685042110585
Author(s):  
Tzu-Kuang Hsu

In this paper, we propose an integrated method, called quantile mediation analysis, which combines quantile regression and mediation analysis, to examine the impact of renewable energy on carbon dioxide emissions, whether connected to or separate from through economic growth, from 1990 to 2018 in Taiwan. The results of this novel approach indicate that Taiwan's renewable energy did not affect carbon dioxide emissions through the mediation effect of economic growth from the period of 1990 to 2018, and that there is only a direct effect from renewable energy to carbon dioxide emissions at any distribution. Moreover, this result is remarkably different from the result of the traditional ordinary least square approach, which shows that Taiwan‘s renewable energy affects carbon dioxide emissions through the partial mediation effect of economic growth. In conclusion, we suggest that the Taiwanese government should increase the use of renewable energy in reducing local and global carbon dioxide emissions.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Matheus Da Costa Koengkan ◽  
José Alberto Fuinhas

The impact of renewable energy consumption on the carbon dioxide emissions was analyzed for a panel of ten South American countries in a period from 1980 to 2012. The Autoregressive Distributed Lag Methodology was used in order to decompose the total effect of renewable energy consumption on the carbon dioxide emissions in its short- and long-run components. The results indicate that the consumption of renewable energy reduce the carbon dioxide emissions in -0.0420 % when the consumption of alternative sources increases in 1% in short-run. The empirical evidence shows that the renewable consumption plays an important role in reducing CO2 emissions and that the economic growth and energy consumption in the South American countries are still based on fossil fuels.  Keywords: Environmental, Energy economics, Econometric.


2018 ◽  
Vol 31 ◽  
pp. 01008 ◽  
Author(s):  
Hadi Sasana ◽  
Annisa Eka Putri

In the last decade, the increase of energy consumption that has multiplied carbondioxide emissions becomes world problems, especially in the developing countries undergoing industrialization to be developed ones like Indonesia. This aim of this study was to analyze the effect of fossil energy consumption, population growth, and consumption of renewable energy on carbon dioxide emission. The method used was multiple linear regression analysis with Ordinary Least Square approach using time series in the period of 1990 - 2014. The result showed that fossil energy consumption and population growth have a positive influence on carbon dioxide emission in Indonesia. Meanwhile, the consumption variable of renewable energy has a negative effect on the level of carbon dioxide emissions produced.


AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1170-1191
Author(s):  
Peter Schwartzman ◽  
◽  
David Schwartzman ◽  

<abstract> <p>First, we recognize the valuable previous studies which model renewable energy growth with complete termination of fossil fuels along with assumptions of the remaining carbon budgets to reach IPCC warming targets. However, these studies use very complex combined economic/physical modeling and commonly lack transparency regarding the sensitivity to assumed inputs. Moreover, it is not clear that energy poverty with its big present impact in the global South has been eliminated in their scenarios. Further, their CO<sub>2</sub>-equivalent natural gas emission factors are underestimated, which will have significant impact on the computed greenhouse gas emissions. Therefore, we address this question in a transparent modeling study: can the 1.5 ℃ warming target still be met with an aggressive phaseout of fossil fuels coupled with a 100% replacement by renewable energy? We compute the continuous generation of global wind/solar energy power along with the cumulative carbon dioxide equivalent emissions in a complete phaseout of fossil fuels over a 20 year period. We compare these computed emissions with the state-of-the-science estimates for the remaining carbon budget of carbon dioxide emissions consistent with the 1.5 ℃ warming target, concluding that it is still possible to meet this warming target if the creation of a global 100% renewable energy transition of sufficient capacity begins very soon which will likely be needed to power aggressive negative carbon emission technology. The latter is focused on direct air capture for crustal storage. More efficient renewable technologies in the near future will make this transition easier and promote the implementation of a global circular economy. Taking into account technological improvements in 2<sup>nd</sup> law (exergy) efficiencies reducing the necessary global energy demand, the renewable supply should likely be no more than 1.5 times the present level, with the capacity to eliminate global energy poverty, for climate mitigation and adaptation.</p> </abstract>


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1570
Author(s):  
Leanda C. Garvie ◽  
Stephen H. Roxburgh ◽  
Fabiano A. Ximenes

Harnessing sustainably sourced forest biomass for renewable energy is well-established in some parts of the developed world. Forest-based bioenergy has the potential to offset carbon dioxide emissions from fossil fuels, thereby playing a role in climate change mitigation. Despite having an established commercial forestry industry, with large quantities of residue generated each year, there is limited use for forest biomass for renewable energy in Queensland, and Australia more broadly. The objective of this study was to identify the carbon dioxide mitigation potential of replacing fossil fuels with bioenergy generated from forest harvest residues harnessed from commercial plantations of Pinus species in southeast Queensland. An empirical-based full carbon accounting model (FullCAM) was used to simulate the accumulation of carbon in harvest residues. The results from the FullCAM modelling were further analysed to identify the energy substitution and greenhouse gas (GHG) emissions offsets of three bioenergy scenarios. The results of the analysis suggest that the greatest opportunity to avoid or offset emissions is achieved when combined heat and power using residue feedstocks replaces coal-fired electricity. The results of this study suggest that forest residue bioenergy is a viable alternative to traditional energy sources, offering substantive emission reductions, with the potential to contribute towards renewable energy and emission reduction targets in Queensland. The approach used in this case study will be valuable to other regions exploring bioenergy generation from forest or other biomass residues.


Sign in / Sign up

Export Citation Format

Share Document