A Study on the Optimization of the Natural Frequency of a Ring-Stiffened Cylindrical Shell

2012 ◽  
Vol 36 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Jin-Geon Chang ◽  
Young-Shin Lee ◽  
Tae-Ho Yang
2021 ◽  
Vol 10 (1) ◽  
pp. 414-430
Author(s):  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song ◽  
Jingli Wang ◽  
Li Sun ◽  
...  

Abstract The sandwich structures are three- or multilayered structures such that their mechanical properties are better than each single layer. In the current research, a three-layered cylindrical shell including a functionally graded porous core and two reinforced nanocomposite face sheets resting on the Pasternak foundation is used as model to provide a comprehensive understanding of vibrational behavior of such structures. The core is made of limestone, while the epoxy is utilized as the top and bottom layers’ matrix phase and also it is reinforced by the graphene nanoplatelets (GNPs). The pattern of the GNPs dispersion and the pores distribution play a crucial role at the continuous change of the layers’ properties. The sinusoidal shear deformation shells theory and the Hamilton’s principle are employed to derive the equations of motion for the mentioned cylindrical sandwich shell. Ultimately, the impacts of the model’s geometry, foundation moduli, mode number, and deviatory radius on the vibrational behavior are investigated and discussed. It is revealed that the natural frequency and rotation angle of the sandwich shell are directly related. Moreover, mid-radius to thickness ratio enhancement results in the natural frequency reduction. The results of this study can be helpful for the future investigations in such a broad context. Furthermore, for the pipe factories current study can be effective at their designing procedure.


Author(s):  
Tao He ◽  
Pengpeng Zhu ◽  
Xiangmin Zhang

A light-activated shape-memory polymer is a novel smart material that exhibits a dynamic Young's modulus when exposed to light. The non-contact actuation feature facilitates the lamination of a light-activated shape-memory polymer on host structures for realising frequency control. In this study, we investigated the natural frequency of a simply supported cylindrical shell coupled with light-activated shape-memory polymer patches located arbitrarily on the shell. Initially, we compared the natural frequency of a completely laminated cylindrical shell using two different approaches. Further, we analysed the effect of changes in the length and location of the light-activated shape-memory polymer patch pair on the natural frequency of the cylindrical shell. Based on the experimental results, we propose an optimal scheme, wherein several light-activated shape-memory polymer patch pairs are distributed on the surface of the shell, and the frequency control capability of the proposed scheme is evaluated comprehensively. The results verify that the optimal scheme has an adequate control effect on the natural frequency of the cylindrical shell.


Author(s):  
Sarmila Sahoo

The free vibration of laminated composite stiffened cylindrical shell panels in the presence of cutout is investigated. A finite element code is developed using eight-noded curved quadratic isoparametric element for shell with a three noded beam element for stiffener and the formulation is validated through solution of benchmark problems which were earlier solved by other researchers. Parametric study is carried out varying the size of the cutouts and their positions with respect to the shell centre for different edge constraints. The results are presented in the form of figures and tables. The results are further analyzed to suggest guidelines to select optimum size and position of the cutout with respect to shell centre considering the different practical constraints.


Author(s):  
C-J Liao ◽  
W-K Jiang ◽  
H Duan ◽  
Y Wang

An analytical study on the vibration and acoustic radiation from an axially stiffened cylindrical shell in water is presented. Supposing that the axial stiffeners interact with the cylindrical shell only through radial forces, the reaction forces on the shell from stiffeners can be expressed by additional impedance. The coupled vibration equation of the finite cylindrical shell with axial stiffening is derived; in this equation additional impedance caused by the axial stiffeners is added. As a result, the vibration and sound radiation of the shell are dependent on the mechanical impedance of the shell, the radiation sound impedance, and the additional impedance of the axial stiffeners. Based on the numerical simulation, it is found that the existence of axial stiffeners decreases the sound radiation and surface average velocity, whereas it increases the radiation factor. The characteristics of the acoustic radiation can be understood from the simulation with good results, which show that the presented methodology can be used to study the mechanism of the acoustic radiation of the complicated cylindrical shell and to optimize its design.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Anbin Yu ◽  
Yinglong Zhao ◽  
Youqian Wang ◽  
Ben Zhang

Based on the Flügge theory and orthotropic theory, the acoustic vibration coupling model of ring-stiffened cylindrical shell is established by using the wave propagation method and virtual source method. And the effects of water immersion on both sides, free surface, and hydrostatic pressure on the cylindrical shell are considered in the coupling model. Muller three-point iterative method is used to solve the coupling frequency. The calculation results of degradation theory are compared with COMSOL’s calculation results and experimental results, respectively, which verifies the reliability of the theoretical method. Finally, the influence of fluid load, ring rib parameters, boundary conditions, hydrostatic pressure, and free surface on the coupled vibration of ring-stiffened cylindrical shell is analyzed by an example.


2018 ◽  
Vol 18 (11) ◽  
pp. 1850138 ◽  
Author(s):  
Yueyang Han ◽  
Xiang Zhu ◽  
Tianyun Li ◽  
Yunyan Yu ◽  
Xiaofang Hu

An analytical approach for predicting the free vibration and elastic critical load of functionally graded material (FGM) thin cylindrical shells filled with internal pressured fluid is presented in this study. The vibration of the FGM cylindrical shell is described by the Flügge shell theory, where the internal static pressure is considered as the prestress term in the shell equations. The motion of the internal fluid is described by the acoustic wave equation. The natural frequencies of the FGM cylindrical shell under different internal pressures are obtained with the wave propagation method. The relationship between the internal pressure and the natural frequency of the cylindrical shell is analyzed. Then the linear extrapolation method is employed to obtain the elastic critical load of the FGM cylindrical shell from the condition that the increasing pressure has resulted in zero natural frequency. The accuracy of the present method is verified by comparison with the published results. The effects of gradient index, boundary conditions and structural parameters on the elastic critical load of the FGM cylindrical shell are discussed. Compared with the experimental and numerical analyses based on the external pressure, the present method is simple and easy to carry out.


Sign in / Sign up

Export Citation Format

Share Document