A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

2015 ◽  
Vol 39 (11) ◽  
pp. 1145-1151 ◽  
Author(s):  
Jae Sung Huh ◽  
Young Seok Kang ◽  
Dong Ho Rhee ◽  
Do Young Seo
Author(s):  
Muhammad Naeem

Some in-service deterioration in any mechanical device, such as a military aero-engine, is inevitable. As a result of experiencing any deterioration, an aero-engine will seek a different steady operating point thereby resulting in a variation in the high-pressure spool speeds in order to provide the same thrust to keep aircraft’s performance invariant. Any increase in the high-pressure spool speed results in greater low-cycle fatigue damage for the hot-end components and thereby higher engine’s life-cycle costs. Possessing better knowledge (of the impacts of high-pressure turbine’s erosion upon the low-cycle fatigue life-consumption of aero-engine’s hot-end components) helps the users to take wiser management decisions. For a military aircraft’s mission profile, using bespoke computer simulations, the impacts of turbine erosion for high-pressure turbine-blade’s low-cycle fatigue life-consumption have been predicted.


Author(s):  
Zhexin Wang ◽  
Yuwen Su ◽  
Jingpeng Feng

The material selection method is critically evaluated to enable high pressure (HP) turbine blades to deal with in-service damaging phenomena such as creep, low cycle fatigue and high cycle fatigue, oxidation and corrosion. The material selection method is analyzed in order to improve the service life of the aero engine. To increase the turbine inlet temperature, HP turbine blades need improved creep and fatigue resistance. more quality. By the typical working condition of HP turbine blade, using CES Edu Pack (CES) material selection software was used to select suitable materials for HP turbine blade material. Nickel based alloys are selected for HP turbine blades, such as Nickel-Cr-Co-Mo superalloy.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

As controlled laboratory experiments using full-stage turbines are expanded to replicate more of the complicated flow features associated with real engines, it is important to understand the influence of the vane inlet temperature profile on the high-pressure vane and blade heat transfer as well as its interaction with film cooling. The temperature distribution of the incoming fluid governs not only the input conditions to the boundary layer but also the overall fluid migration. Both of these mechanisms have a strong influence on surface heat flux and therefore component life predictions. To better understand the role of the inlet temperature profile, an electrically heated combustor emulator capable of generating uniform, radial, or hot streak temperature profiles at the high-pressure turbine vane inlet has been designed, constructed, and operated over a wide range of conditions. The device is shown to introduce a negligible pressure distortion while generating the inlet temperature conditions for a stage-and-a-half turbine operating at design-corrected conditions. For the measurements described here, the vane is fully cooled and the rotor purge flow is active, but the blades are uncooled. Detailed temperature measurements are obtained at rake locations upstream and downstream of the turbine stage as well as at the leading edge and platform of the blade in order to characterize the inlet temperature profile and its migration. The use of miniature butt-welded thermocouples at the leading edge and on the platform (protruding into the flow) on a rotating blade is a novel method of mapping a temperature profile. These measurements show that the reduction in fluid temperature due to cooling is similar in magnitude for both uniform and radial vane inlet temperature profiles.


Author(s):  
Azam Thatte ◽  
Etienne Martin ◽  
Tim Hanlon

CSP plants using supercritical CO2 (sCO2) power cycle can potentially achieve high thermal conversion efficiency at low capital cost due to compact turbomachinery and other components. An sCO2 expander and improved heat exchanger is expected to provide a major stepping stone for achieving CSP power at $0.06/kW-hr LCOE, energy conversion efficiency > 50%, and total power block cost < $1,200/kW installed. However the life limiting mechanisms of these turbomachines in high pressure, high temperature sCO2 environment are not well understood. To understand the effect of high pressures, high temperatures and sCO2 chemical kinetics on crack initiation, crack propagation and low cycle fatigue (LCF) life of these turbomachines, a novel experimental setup is developed. Advanced microstructure and spectroscopic analyses are conducted that shed light on some key differences between various Ni base alloys in terms of oxidation morphology, chemical species diffusion and trapping, the formation of protective corrosion resistant layers and changes in surface properties. An experimental technique for low cycle fatigue experiments in high pressure, high temperature supercritical CO2 environment is developed. The test setup allows for pressurized LCF testing of alloys being considered for MW scale sCO2 turbine development. Results show that the LCF life remains the same (within the scatter band) irrespective of the location of crack initiation site whether at the OD (non shot-peened bars in air and sCO2), or at the ID (shot peened bars). Total fatigue life, for all conditions, lie within the normal variation in LCF results (± 2X life variation). No significant LCF life debit is observed in IN718 by sCO2 at 550 °C, 0.7% max strain, 20 cpm. Similar conclusion is reached during 0.6% max strain tests. The effect of sCO2 is found not to be significantly more damaging than air at these strain levels. However, the results can be different for lower % max strains due to longer exposure times involved, resulting from larger number of cycles to failure. Similarly at higher temperatures and/or longer hold-times, sCO2 environment may be more aggressive, resulting in lower total fatigue life.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

Heat-flux measurements are presented for a one-and-one-half stage high-pressure turbine operating at design-corrected conditions with modulated cooling flows in the presence of different inlet temperature profiles. Coolant is supplied from a heavily film-cooled vane and the purge cavity (between the rotor disk and the upstream vane) but not from the rotor blades, which are solid metal. Thin-film heat-flux gauges are located on the uncooled blade pressure and suction surface (at multiple span locations), on the blade tip, on the blade platform, and on the disk and vane sides of the purge cavity. These measurements provide a comprehensive picture of the effect of varying cooling flow rates on surface heat transfer to the turbine blade for uniform and radial inlet temperature profiles. Part I of this paper examines the macroscopic influence of varying all cooling flows together, while Part II investigates the individual regions of influence of the vane outer and purge cooling circuits in more detail. The heat-flux gauges are able to track the cooling flow over the suction surface of the airfoil as it wraps upwards along the base of the airfoil for the uniform vane inlet temperature profile. A similar comparison for the radial profile shows the same coolant behavior but with less pronounced changes. From these comparisons, it is clear that cooling impacts each temperature profile similarly. Nearly all of the cooling influence is limited to the blade suction surface, but small changes are observed for the pressure surface. In addition to the cooling study, a novel method of calculating the adiabatic wall temperature is demonstrated. The derived adiabatic wall temperature distribution shows very similar trends to the Stanton number distribution on the blade.


Sign in / Sign up

Export Citation Format

Share Document