scholarly journals Investigation of the requirements for the selection of materials for high pressure Turbine blades of conventional turbojet engines

Author(s):  
Zhexin Wang ◽  
Yuwen Su ◽  
Jingpeng Feng

The material selection method is critically evaluated to enable high pressure (HP) turbine blades to deal with in-service damaging phenomena such as creep, low cycle fatigue and high cycle fatigue, oxidation and corrosion. The material selection method is analyzed in order to improve the service life of the aero engine. To increase the turbine inlet temperature, HP turbine blades need improved creep and fatigue resistance. more quality. By the typical working condition of HP turbine blade, using CES Edu Pack (CES) material selection software was used to select suitable materials for HP turbine blade material. Nickel based alloys are selected for HP turbine blades, such as Nickel-Cr-Co-Mo superalloy.

Author(s):  
Paolo Del Turco ◽  
Michele D’Ercole ◽  
Nicola Pieroni ◽  
Massimiliano Mariotti ◽  
Francesco Gamberi ◽  
...  

Major limitations for power turbine blades for oil & gas and industrial applications are Creep and HCF (High Cycle Fatigue). Power Turbine blades, being normally uncooled, are generally not affected by high temperature gradients; therefore LCF (Low Cycle Fatigue) doesn’t constitute their main limiting life factor. If creep is often not a limiting factor for aircraft engines blades, where inspection, maintenance and replacement intervals are more frequent, it becomes one of the key drivers for an industrial gas turbine where required flow path components life is at least one order larger. To avoid HCF failures, it would be desirable to avoid stimuli crossing natural frequencies in the entire operative range. However, due to the wide operative range and high number of stimuli present, the avoidance of potential resonance crossings is often not possible. This is the one of the reasons why a prototype validation campaign is usually performed, where, during the test, vibratory stress levels are compared to HCF endurance limits. This paper describes the processes used in GE Infrastructure Oil&Gas to verify, design, develop and test a PT (Power Turbine) blade for an upgraded 35 MW-class aero-derivative gas turbine. Initial assessment phases, new material selection, concurrent engineering efforts, bench testing characterization and final validation on FETT (First Engine to Test) are described. A particular focus is given to the analytical tools (i.e. modal cyclic symmetry analysis) used during the design phase and validation tests.


Author(s):  
Steven G. Gegg ◽  
Nathan J. Heidegger ◽  
Ronald A. Mikkelson

High pressure turbine blades are exposed to an extreme high temperature environment due to increasing turbine inlet temperature. High heat fluxes are likely on the blade pressure surface. Other regions, such as the trailing edge and blade tip may be difficult to cool uniformly. Unshrouded blades present an additional challenge due to the pressure driven transport of hot gas across the blade tip. The blade tip region is therefore prone to severe thermal stress, fatigue and oxidation. In order to develop effective cooling methods, designers require detailed flow and heat transfer information. This paper reports on computational aerodynamics and heat transfer studies for an unshrouded high pressure turbine blade. The emphasis is placed on the application of appropriate 3-D models for the prediction of airfoil surface temperatures. Details of the film cooling model, boundary conditions and data exchange with heat transfer models are described. The analysis approach has been refined for design use to provide timely and accurate results. Film cooling designs are to be tailored for the best coverage of the blade tip region. Designs include near-tip pressure side films and blade tip cooling holes. Hole placement and angle are investigated to achieve the best coolant coverage on the blade tip. Analytical results are compared to a thermal paint test on engine hardware. In addition to film cooling strategies, other aerodynamic/heat transfer design approaches are discussed to address the cooling requirements for an unshrouded blade.


Author(s):  
Lei Han ◽  
Cao Chen ◽  
Xiaoyong Zhang ◽  
Xiaojun Yan

The combined high and low cycle fatigue (CCF) test on full scale turbine blade in the laboratory is an important method to evaluate the life. In fact, the low cycle fatigue which is usually caused by the centrifugal force can be confirmed easily. While, the high cycle fatigue which is usually caused by the vibration and aerodynamic force is often hard to determine. So the previous scholar has proposed the contrast method to determine the high cycle load in the field. This method utilizes the new and used blades to determine the high cycle within certain limits. While it can’t be applied effectively in the whole life range with the low cycle-high cycle-ultra high cycle fatigue theory raised. So this paper put forward the modified contrast method to realize the optimization. Firstly, the CCF tests are carried out on the turbine blade systematically. Then, the CCF damage properties, including the crack propagation, the fracture morphology and the dynamic characteristic are analyzed. Lastly, the new modified contrast method is proposed with the new coordinate axes, new fitting criterions and amend method. Through comparisons we conclude that: the new method is slightly complicated, but the evaluate precision has significantly increased. So it could be used to deal with data for CCF tests on full scale turbine blade in the future.


2021 ◽  
Author(s):  
Navindra Wijeyeratne ◽  
Firat Irmak ◽  
Ali P. Gordon

Abstract Nickel-base superalloys (NBSAs) are extensively utilized as the design materials to develop turbine blades in gas turbines due to their excellent high-temperature properties. Gas turbine blades are exposed to extreme loading histories that combine high mechanical and thermal stresses. Both directionally solidified (DS) and single crystal NBSAs are used throughout the industry because of their superior tensile and creep strength, excellent low cycle fatigue (LCF), high cycle fatigue (HCF), and thermomechanical fatigue (TMF) capabilities. Directional solidification techniques facilitated the solidification structure of the materials to be composed of columnar grains in parallel to the <001> direction. Due to grains being the sites of failure initiation the elimination of grain boundaries compared to polycrystals and the alignment of grain boundaries in the normal to stress axis increases the strength of the material at high temperatures. To develop components with superior service capabilities while reducing the development cost, simulating the material’s performance at various loading conditions is extremely advantageous. To support the mechanical design process, a framework consisting of theoretical mechanics, numerical simulations, and experimental analysis is required. The absence of grain boundaries transverse to the loading direction and crystallographic special orientation cause the material to exhibit anisotropic behavior. A framework that can simulate the physical attributes of the material microstructure is crucial in developing an accurate constitutive model. The plastic flow acting on the crystallographic slip planes essentially controls the plastic deformation of the material. Crystal Visco-Plasticity (CVP) theory integrates this phenomenon to describe the effects of plasticity more accurately. CVP constitutive models can capture the orientation, temperature, and rate dependence of these materials under a variety of conditions. The CVP model is initially developed for SX material and then extended to DS material to account for the columnar grain structure. The formulation consists of a flow rule combined with an internal state variable to describe the shearing rate for each slip system. The model presented includes the inelastic mechanisms of kinematic and isotropic hardening, orientation, and temperature dependence. The crystallographic slip is accounted for by including the required octahedral, cubic, and cross slip systems. The CVP model is implemented through a general-purpose finite element analysis software (i.e., ANSYS) as a User-Defined Material (USERMAT). Uniaxial experiments were conducted in key orientations to evaluate the degree of elastic and inelastic anisotropy. The temperature-dependent modeling parameter is developed to perform non-isothermal simulations. A numerical optimization scheme is utilized to develop the modeling constant to improve the calibration of the model. The CVP model can simulate material behavior for DS and SX NBSAs for monotonic and cyclic loading for a range of material orientations and temperatures.


Author(s):  
Firat Irmak ◽  
Navindra Wijeyeratne ◽  
Taejun Yun ◽  
Ali Gordon

Abstract In the development and assessment of critical gas turbine components, simulations have a crucial role. An accurate life prediction approach is needed to estimate lifespan of these components. Nickel base superalloys remain the material of choice for gas turbine blades in the energy industry. These blades are required to withstand both fatigue and creep at extreme temperatures during their usage time. Nickel-base superalloys present an excellent heat resistance at high temperatures. Presence of chromium in the chemical composition makes these alloys highly resistant to corrosion, which is critical for turbine blades. This study presents a flexible approach to combine creep and fatigue damages for a single crystal Nickel-base superalloy. Stress and strain states are used to compute life calculations, which makes this approach applicable for component level. The cumulative damage approach is utilized in this study, where dominant damage modes are capturing primary microstructural mechanism associated with failure. The total damage is divided into two distinctive modules: fatigue and creep. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. Fatigue module is governed by a modified version of Coffin-Manson and Basquin model, which captures the orientation dependence of the candidate material. Additionally, Robinson’s creep rupture model is applied to predict creep damage in this study. A novel crystal visco-plasticity (CVP) model is used to simulate deformation of the alloy under several different types of loading. This model has capability to illustrate the temperature-, rate-, orientation-, and history-dependence of the material. A user defined material (usermat) is created to be used in ANSYS APDL 19.0, where the CVP model is applied by User Programmable Feature (UPF). This deformation model is constructed of a flow rule and internal state variables, where the kinematic hardening phenomena is captured by back stress. Octahedral, cubic and cross slip systems are included to perform simulations in different orientations. An implicit integration process that uses Newton-Raphson iteration scheme is utilized to calculate the desired solutions. Several tensile, low-cycle fatigue (LCF) and creep experiments were conducted to inform modeling parameters for the life prediction and the CVP models.


1984 ◽  
Vol 16 (1) ◽  
pp. 21-24
Author(s):  
A. P. Korchagin ◽  
M. I. Mil' ◽  
S. I. Kirillov ◽  
V. I. Fedorov

Sign in / Sign up

Export Citation Format

Share Document