Study on the Automated Size Optimization and Structural Analysis Program for Composite Lattice Structures

Author(s):  
Hyo-Hun An ◽  
Min-Ho Jung ◽  
Nam-Hun Kim ◽  
Eun-Bi Lee ◽  
Kwang-Bok Shin
Author(s):  
Recep M Gorguluarslan

This paper aims to improve the energy absorption performance of stiffness-optimized lattice structures by utilizing a multi-objective surrogate-based size optimization that considers the additive manufacturing (AM) constraints such as the minimum printable size. A truss optimization is first utilized at the unit cell level under static compressive loads for stiffness maximization and two optimized lattice configurations called the Face-Body Centered Cubic (FBCC) lattice and the Octet Cubic (OC) are obtained. A multi-objective size optimization process is then carried out to improve the energy absorption capabilities of those lattice designs using non-linear compression simulations with Nylon12 material to be fabricated by the Multi Jet Fusion (MJF) AM process. Thin plate spline (TPS) interpolation method is found to produce very high accuracy as the surrogate model to predict the highly nonlinear response surfaces of energy absorption objectives in the optimization. Compared to the lattice designs with uniform strut diameters, by using the optimization process, the maximum energy absorption efficiency ( EAEm) and the crush stress efficiency ( CSE) of the OC lattice design are further improved up to 33% and 37%, respectively. The FBCC lattice design is also found to have superior EAEm performance compared to the existing lattice types considered for fabricating by the MJF process in the literature.


2019 ◽  
Vol 225 ◽  
pp. 111192 ◽  
Author(s):  
Wenfeng Hao ◽  
Ye Liu ◽  
Tao Wang ◽  
Guangping Guo ◽  
Haosen Chen ◽  
...  

2009 ◽  
Vol 69 (11-12) ◽  
pp. 1896-1903 ◽  
Author(s):  
Hualin Fan ◽  
Fennian Jin ◽  
Daining Fang

Author(s):  
Marinela Peto ◽  
Erick Ramirez-Cedillo ◽  
Mohammad J. Uddin ◽  
Ciro A. Rodriguez ◽  
Hector R. Siller

Abstract Lattice structures used for medical implants offer advantages related to weight reduction, osseointegration, and minimization of stress shielding. This paper intends to study and to compare the mechanical behavior of three different lattice structures: tetrahedral vertex centroid (TVC), hexagonal prism vertex centroid (HPVC), and cubic diamond (CD), that are designed to be incorporated in a shoulder hemiprosthesis. The unit cell configurations were generated using nTopology Element Pro software with a uniform strut thickness of 0.5 mm. Fifteen cuboid samples of 25mm × 25mm × 15 mm, five for each unit cell configuration, were additively manufactured using Direct Light Printing (DLP) technology with a layer height of 50μm and a XY resolution of 73μm. The mechanical behavior of the 3D printed lattice structures was examined by performing mechanical compression testing. E-silicone (methacrylated silicone) was used for the fabrication of samples, and its mechanical properties were obtained from experimental tensile testing of dog-bone samples. A methodology for size optimization of lattice unit cells is provided, and the optimization is achieved using nTopology Element Pro software. The generated results are analyzed, and the HPVC configuration is selected to be incorporated in the further design of prosthesis for bone cancer patients.


Sign in / Sign up

Export Citation Format

Share Document