Long-fiber reinforced thermoplastic composite lattice structures: Fabrication and compressive properties

Author(s):  
Bo Xu ◽  
Sha Yin ◽  
Yang Wang ◽  
Hongfu Li ◽  
Boming Zhang ◽  
...  
Author(s):  
Fabrizio Quadrini ◽  
Daniele Santoro ◽  
Leandro Iorio ◽  
Loredana Santo

Abstract A new manufacturing process for thermoplastic (TP) composite parts has been used to produce conical anisogrid composite lattice structure (ACLS). An out-of-autoclave (OOA) process has been prototyped by using the compaction exerted by a heat-shrink tube after its exposition to heat in oven. Narrow thermoplastic prepreg tapes have been wounded on a metallic conical patterned mold at room temperature; then, the conical structure has been inserted in the heat-shrink tube and heated. TP unidirectional prepreg tapes have been used with polypropylene matrix and glass fibers. After molding, the TP ACLS has been tested under axial and transverse compression. Conical adapters were used in the transverse loading condition to allow uniform application of the load. Density measurement has been also performed to assess the quality of the OOA process. Results of this study show that TP ACLS with complex shape may be produced with OOA solutions without affecting mechanical performance. In fact, porosity levels of the consolidate ACLS are comparable with the initial prepreg despite of the absence of vacuum during molding. Moreover, high compressive stiffness was measured along both directions without observing damages, buckling or cracks in multiple tests. In the future, this kind of technology could be used for larger ACLSs by substituting the heat-shrink tube with a narrow tape to be wound as well after lamination.


2019 ◽  
Vol 225 ◽  
pp. 111192 ◽  
Author(s):  
Wenfeng Hao ◽  
Ye Liu ◽  
Tao Wang ◽  
Guangping Guo ◽  
Haosen Chen ◽  
...  

2020 ◽  
Vol 10 (16) ◽  
pp. 5499
Author(s):  
Abera Tullu ◽  
Bong-Sul Lee ◽  
Ho-Yon Hwang

The anisotropic nature of fiber reinforced composite materials causes great challenges in predicting the inter-ply shear stress during forming. The complexity of understanding the functional dependency of inter-ply shear stress on multiple forming parameters such as blank temperature, pressure load, inter-ply slippage, and the relative fiber orientation angle of adjacent plies further limits the effort to produce a defect-free composite structure. Performing real experiments for various combinations of the mentioned parameters is both time consuming and economically costly. To overcome these difficulties, a surrogate-based analysis of inter-ply shear stress is proposed in this study. Based on the ranges of the forming parameters, computer experiments were performed. Using these experimental data, a radial basis function (RBF) based surrogate model that mimics inter-ply shear stress during composite press forming was developed. The fidelity of this model was checked with test data and found to be over 98% efficient.


Author(s):  
Fabrizio Quadrini ◽  
Claudia Prosperi ◽  
Loredana Santo

A rubber-toughened thermoplastic composite was produced by alternating long glass fiber reinforced polypropylene prepregs and rubber particles. Several composite laminates were obtained by changing the number of plies, the rubber powder size distribution, and the stacking sequence. Quasi-static mechanical tests (tensile and flexure) and time dependent tests (dynamic mechanical analysis and cyclic flexure) were carried out to evaluate strength and damping properties. As expected, 10 wt% rubber-filled laminates showed lower strengths than rubber-free laminates but the effect of the rubber on the composite damping properties was evident. At low rates, the rubber particles can also double the dissipated energy under cyclic loading, even if this effect disappears by increasing the test rate.


Sign in / Sign up

Export Citation Format

Share Document